已知向量
a
=(1,2),
b
=(1+m,m-1),若
a
b
,則實數(shù)m的值為( 。
A、3B、-3C、2D、-2
考點:平面向量共線(平行)的坐標表示
專題:平面向量及應用
分析:利用向量共線定理即可得出.
解答: 解:∵
a
b

∴2(1+m)-(m-1)=0,
解得m=-3,
故選:B.
點評:本題考查了向量共線定理,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給定下列命題:
(1)在△ABC中,∠A<∠B是cos2A>cos2B的充要條件;
(2)λ,μ為實數(shù),若λ
a
b
,則
a
b
共線;
(3)若向量
a
,
b
滿足|
a
|=|
b
|,則
a
=
b
a
=-
b
;
(4)函數(shù)y=sin(2x+
π
3
)sin(
π
6
-2x)
的最小正周期是π;
(5)若命題p為:
1
x-1
>0,則?p:
1
x-1
≤0
(6)由a1=1,an=3n-1,求出S1,S2,S3猜想出數(shù)列的前n項和Sn的表達式的推理是歸納推理.
其中正確的命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,且c=2a,則sinB=(  )
A、
1
4
B、
3
4
C、
7
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,M是BC的中點,AM=5,BC=6,則
AB
AC
等于(  )
A、9B、12C、16D、30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD是塊矩形硬紙板,其中AB=2AD=2
2
,E為DC中點,將它沿AE折成直二面角D-AE-B.
(Ⅰ)求證:BE⊥平面ADE;
(Ⅱ)求銳二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=1-2-x,則不等式f(x)<-
1
2
的解集是(  )
A、(-∞,-1]
B、(-∞,-1)
C、[1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)M,m分別是f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),由上述估值定理,估計定積分
2
-1
2-x2
dx的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若f(x)在區(qū)間x∈[1,2)是減函數(shù),則函數(shù) f(x)( 。
A、在區(qū)間[-2,-1]上是減函數(shù),區(qū)間[3,4]上是增函數(shù)
B、在區(qū)間[-2,-1]上是減函數(shù),區(qū)間[3,4]上是減函數(shù)
C、在區(qū)間[-2,-1]上是增函數(shù),區(qū)間[3,4]上是增函數(shù)
D、在區(qū)間[-2,-1]上是增函數(shù),區(qū)間[3,4]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一張坐標紙折疊一次,使得點(0,2)與點(2,0)重合,點(7,3)與點(m,n)重合,則m+n=(  )
A、4
B、6
C、10
D、
36
5

查看答案和解析>>

同步練習冊答案