已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.
(1)極大值,極小值;(2).
解析試題分析:(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)結(jié)合表格求出函數(shù)的極大值與極小值;(2)對(duì)的符號(hào)進(jìn)行分三類討論①;②;③,主要是取絕對(duì)值符號(hào),結(jié)合基本不等式求出參數(shù)的取值范圍,最后再相應(yīng)地取在三種情況下對(duì)應(yīng)取值范圍的交集.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)的導(dǎo)函數(shù)為偶函數(shù),且曲線在點(diǎn)處的切線的斜率為.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=xlnx-x2.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=ln x,g(x)=x2-bx(b為常數(shù)).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
(12分)(2011•陜西)如圖,從點(diǎn)P1(0,0)做x軸的垂線交曲線y=ex于點(diǎn)Q1(0,1),曲線在Q1點(diǎn)處的切線與x軸交于點(diǎn)P2,再?gòu)腜2做x軸的垂線交曲線于點(diǎn)Q2,依次重復(fù)上述過(guò)程得到一系列點(diǎn):P1,Q1;P2,Q2…;Pn,Qn,記Pk點(diǎn)的坐標(biāo)為(xk,0)(k=1,2,…,n).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
設(shè)函數(shù)f(x)=ln x-ax,g(x)=ex-ax,其中a為實(shí)數(shù).若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
(1)當(dāng)時(shí),,
,
令,解得,,
當(dāng)時(shí),得或;
當(dāng)時(shí),得,
當(dāng)變化時(shí),,的變化情況如下表:單調(diào)遞增
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)確定的值;
(2)若,判斷的單調(diào)性;
(3)若有極值,求的取值范圍.
(1)當(dāng)a=1時(shí),函數(shù)y=f(x)有幾個(gè)極值點(diǎn)?
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)=xlnx-x2有兩個(gè)極值?若存在,求實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(1)當(dāng)時(shí),求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.
(1)若曲線在處的切線與直線平行,求a的值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間.
(1)函數(shù)f(x)的圖像在點(diǎn)(1,f(1))處的切線與g(x)的圖像相切,求實(shí)數(shù)b的值;
(2)設(shè)h(x)=f(x)+g(x),若函數(shù)h(x)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)b的取值范圍;
(3)若b>1,對(duì)于區(qū)間[1,2]上的任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求實(shí)數(shù)b的取值范圍.
(Ⅰ)試求xk與xk﹣1的關(guān)系(2≤k≤n);
(Ⅱ)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記曲線在點(diǎn)(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值.
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)