在△ABC中.
(1)已知sinA=cosBcosC,求證:tanC+tanB=1;
(2)求證:a2-2ab cos(60°+C)=b2-2bc cos(60°+A).
分析:(1)根據(jù)A=B+C把sinA轉(zhuǎn)換成sin(A+B),進(jìn)而利用兩角和公式化簡(jiǎn)整理,等式兩邊同時(shí)除以cosBcosC,即可證明原式.
(2)先利用兩角和公式對(duì)要證的結(jié)論化簡(jiǎn)整理可得a
2-abcosC+ab
sinC=c
2-bccosA+bc
sinA 再利用余弦定理分別把cosC,cosA代入整理asinC=csinA,根據(jù)正弦定理可知在三角形中此等式恒成立,進(jìn)而使原式得證.
解答:解:(1)因?yàn)樵谌切蜛BC中,sinA=cosBcosC
∴sin(B+C)=cosBcosC
即sinBcosC+cosBsinC=cosBcosC
等式兩邊同時(shí)除以cosBcosC,得
+
=1
即tanB+tanC=1,原式得證.
(2)證明:要使a
2-2ab cos(60°+C)=b
2-2bc cos(60°+A).
需a
2-2ab(
cosC-
sinC)=c
2-2bc(
cosA-
sinA)
需a
2-abcosC+ab
sinC=c
2-bccosA+bc
sinA
需a
2-
(a
2+b
2-c
2)+ab
sinC=c
2-
(b
2+c
2-a
2)+bc
sinA
需a
2-b
2+c
2+2ab
sinC=c
2-b
2+a
2+2bc
sinA
需asinC=csinA
在三角形ABC中,根據(jù)正弦定理可知
=即asinC=csinA恒成立,
所以等式得證
點(diǎn)評(píng):本題主要考查了三角函數(shù)恒等式的證明,涉及了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系的應(yīng)用等.考查了學(xué)生綜合分析問題和演繹推理的能力.