【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是(
A.f(x)=|x|,
B. ,
C. ,g(x)=x+1
D. ,

【答案】A
【解析】解:A.函數(shù)g(x)= =|x|,兩個函數(shù)的對應(yīng)法則和定義域相同,是相等函數(shù).
B.函數(shù)f(x)= =|x|,g(x)=x,兩個函數(shù)的對應(yīng)法則和定義域不相同,不是相等函數(shù).
C.函數(shù)f(x)=x+1的定義域為{x|x≠1},兩個函數(shù)的定義域不相同,不是相等函數(shù).
D.由 ,解得x≥1,即函數(shù)f(x)的定義域為{x|x≥1},
由x2﹣1≥0,解得x≥1或x≤﹣1,即g(x)的定義域為{x|x≥1或x≤﹣1},兩個函數(shù)的定義域不相同,不是相等函數(shù).
故選:A.
分別判斷兩個函數(shù)定義域和對應(yīng)法則是否一致即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為自然對數(shù)的底數(shù)),, .

(1)若的極值點,且直線分別與函數(shù)的圖象交于,求兩點間的最短距離;

(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0, >0(x>0),則不等式x2f(x)>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的函數(shù)F(x)的圖象,由指數(shù)函數(shù)f(x)=ax與冪函數(shù)g(x)=xb“拼接”而成.

(1)求F(x)的解析式;
(2)比較ab與ba的大小;
(3)已知(m+4)b<(3﹣2m)b , 求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCDABAD,ADBC,APABAD=1.

(Ⅰ)若直線PBCD所成角的大小為,BC的長;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,則下列關(guān)于函數(shù)f(x)的說法正確的是(
A.為奇函數(shù)且在R上為增函數(shù)
B.為偶函數(shù)且在R上為增函數(shù)
C.為奇函數(shù)且在R上為減函數(shù)
D.為偶函數(shù)且在R上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,四邊形是菱形, 相交于, ,點在平面上的射影恰好是線段的中點.

(Ⅰ)求證: 平面;

(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)已知是函數(shù)的一個極值點.

)求;

)求函數(shù)的單調(diào)區(qū)間;

)若直線與函數(shù)的圖象有3個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直線坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(1)直線的普通方程和曲線的參數(shù)方程;

(2)設(shè)點上, 處的切線與直線垂直,求的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案