已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任意m,n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1)
則(1)f(5,6)=
 
,(2)f(m,n)=
 
考點(diǎn):進(jìn)行簡單的合情推理
專題:等差數(shù)列與等比數(shù)列,推理和證明
分析:根據(jù)條件可知{f(m,n)}是以1為首項(xiàng),2為公差的等差數(shù)列,求出f(1,n),以及{f(m,1)}是以1為首項(xiàng)2為公比的等比數(shù)列,求出f(n,1)和f(m,n+1),從而求出所求.
解答: 解:∵f(m,n+1)=f(m,n)+2
∴{f(m,n)}是以1為首項(xiàng),2為公差的等差數(shù)列
∴f(1,n)=2n-1
又∵f(m+1,1)=2f(m,1)
∴{f(m,1)}是以1為首項(xiàng)2為公比的等比數(shù)列,
∴f(n,1)=2n-1
∴f(m,n)=2m-1+2(n-1),
但m=5,n=6時(shí),f(5,6)=24+2×(6-1)=26,
故答案為:26,2m-1+2(n-1)
點(diǎn)評:本題主要考查了抽象函數(shù)及其應(yīng)用,推出f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,是解答本題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案