答案:
解析:

解:原式

       

 


提示:

此題用到了等比數(shù)列的前n項(xiàng)和公式.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1對?x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范圍;
(3)討論關(guān)于x的方程
lnxf(x)
=x2-2ex+m的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來的順序組成一個(gè)數(shù)列,稱之為數(shù)列{an}的一個(gè)子數(shù)列.設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項(xiàng)、第m(m≥2)項(xiàng)(設(shè)am=t)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問當(dāng)且僅當(dāng)t為何值時(shí),該數(shù)列為{an}的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)矩陣A=
1
2
3
2
3
2
-
1
2
,求矩陣A的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)同學(xué)對問題“關(guān)于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求實(shí)數(shù)a的取值范圍”提出各自的解題思路.
甲說:“只須不等式左邊的最小值不小于右邊的最大值”.
乙說:“把不等式變形為左邊含變量x的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說:“把不等式兩邊看成關(guān)于x的函數(shù),作出函數(shù)圖象”.
參考上述解題思路,你認(rèn)為他們所討論的問題的正確結(jié)論,即a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=anxn(x∈R),求數(shù)列{bn}前n項(xiàng)和的公式.

查看答案和解析>>

同步練習(xí)冊答案