A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 直接由復數(shù)代數(shù)形式的乘法運算化簡復數(shù)z,求出復數(shù)z所對應(yīng)的點的坐標,則答案可求.
解答 解:$z=\frac{2i}{2-i}$=$\frac{2i(2+i)}{(2-i)(2+i)}=\frac{-2+4i}{5}=-\frac{2}{5}+\frac{4}{5}i$,
則復數(shù)$z=\frac{2i}{2-i}$(i為虛數(shù)單位)所對應(yīng)的點的坐標為:($-\frac{2}{5}$,$\frac{4}{5}$),位于第二象限.
故選:B.
點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-\frac{π}{8},0)$ | B. | $(-\frac{π}{4},0)$ | C. | $(-\frac{π}{8},1)$ | D. | $(-\frac{π}{4},1)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{5}$ | B. | $\frac{{\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com