過拋物線y2=2px(P>0)的焦點的直線x-my+m=0與拋物線交于A、B兩點,且△OAB(O為坐標原點)的面積為2
2
,則m6+m4=
 
分析:先根據(jù)拋物線的方程求得焦點的坐標,代入直線方程求得m和p的關系式,進而把直線與拋物線方程聯(lián)立消去y,求得方程的解,進而根據(jù)直線方程可分別求得y1和y2,△OAB的面積可分為△OAP與△OBP的面積之和,而△OAP與△OBP若以OP為公共底,則其高即為A,B兩點的y軸坐標的絕對值,進而可表示三角形的面積進而求得p,則m的值可得,代入m6+m4中,即可求得答案.
解答:解:由題意,可知該拋物線的焦點為(
p
2
,0),它過直線,代入直線方程,可知:
p
2
+m=0求得m=-
p
2

∴直線方程變?yōu)椋簓=-
2
p
x+1
A,B兩點是直線與拋物線的交點,
∴它們的坐標都滿足這兩個方程.
∴(-
2
p
x+1)2=2px
∴△=(
4
p
+2p)2-
16
p2
=4p2+16>0
∴方程的解x1=
4
p
+2p-
4p2+16
8
p2

x2=
4
p
+2p+
4p2+16
8
p2
;
代入直線方程,可知:y1=1-
4
p
+2p-
4p2+16
4
p
,
y2=1-
4
p
+2p+
4p2+16
4
p
,
△OAB的面積可分為△OAP與△OBP的面積之和,
而△OAP與△OBP若以OP為公共底,
則其高即為A,B兩點的y軸坐標的絕對值,
∴△OAP與△OBP的面積之和為:
S=
1
2
p
2
•|y1-y2|=
p2
8
4p2+16
=2
2

求得p=2,
∵m=-
p
2

m2=1
∴m6+m4=13+12=1+1=2
故答案為:2
點評:本題主要考查了橢圓的簡單性質,直線,拋物線與橢圓的關系.考查了學生綜合分析問題和基本的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準線的交點為B,點A在拋物線準線上的射影為C,若
AF
=
FB
,
BA
BC
=48
,則拋物線的方程為( 。
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)上一定點P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),若PA與PB的斜率存在且傾斜角互補,則
y1+y2y0
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F作直線交拋物線于A、B兩點,O為拋物線的頂點.則△ABO是一個( 。
A、等邊三角形B、直角三角形C、不等邊銳角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線AB交拋物線于A,B兩點,弦AB的中點為M,過M作AB的垂直平分線交x軸于N.
(1)求證:FN=
12
AB
;
(2)過A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•武漢模擬)已知過拋物線y2=2px(p>0)的焦點F的直線交拋物線于M、N兩點,直線OM、ON(O為坐標原點)分別與準線l:x=-
p
2
相交于P、Q兩點,則∠PFQ=( 。

查看答案和解析>>

同步練習冊答案