【題目】從雙曲線(xiàn) =1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線(xiàn),切點(diǎn)為T(mén),延長(zhǎng)FT交雙曲線(xiàn)右支于點(diǎn)P,若M為線(xiàn)段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|﹣|MT|與b﹣a的大小關(guān)系為( )
A.|MO|﹣|MT|>b﹣a
B.|MO|﹣|MT|=b﹣a
C.|MP|﹣|MT|<b﹣a
D.不確定
【答案】B
【解析】解:將點(diǎn)P置于第一象限. 設(shè)F1是雙曲線(xiàn)的右焦點(diǎn),連接PF1
∵M(jìn)、O分別為FP、FF1的中點(diǎn),∴|MO|= |PF1|.
又由雙曲線(xiàn)定義得,
|PF|﹣|PF1|=2a,
|FT|= =b.
故|MO|﹣|MT|
= |PF1|﹣|MF|+|FT|
= (|PF1|﹣|PF|)+|FT|
=b﹣a.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x(2﹣x),
(1)寫(xiě)出函數(shù)y=f(x)在x∈(﹣∞,0)時(shí)的解析式;
(2)若關(guān)于x的方程f(x)=a恰有兩個(gè)不同的解,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】歐陽(yáng)修《賣(mài)油翁》中寫(xiě)到:(翁)乃取一葫蘆置于地,以錢(qián)覆其口,徐以杓酌油瀝之,自錢(qián)入孔入,而錢(qián)不濕,可見(jiàn)“行行出狀元”,賣(mài)油翁的技藝讓人嘆為觀(guān)止,若銅錢(qián)是直徑為2cm的圓,中間有邊長(zhǎng)為0.5cm的正方形孔,若你隨機(jī)向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=4sinωxcos(ωx+ )+1(ω>0),其圖象上有兩點(diǎn)A(s,t),B(s+2π,t),其中﹣2<t<2,線(xiàn)段AB與函數(shù)圖象有五個(gè)交點(diǎn). (Ⅰ)求ω的值;
(Ⅱ)若函數(shù)f(x)在[x1 , x2]和[x3 , x4]上單調(diào)遞增,在[x2 , x3]上單調(diào)遞減,且滿(mǎn)足等式x4﹣x3=x2﹣x1= (x3﹣x2),求x1、x4所有可能取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},則M∩N=( )
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23人是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱(chēng)為“讀書(shū)謎”,低于60分鐘的學(xué)生稱(chēng)為“非讀書(shū)謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)謎”與性別有關(guān)?
非讀書(shū)迷 | 讀書(shū)迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 | ||
合計(jì) |
(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書(shū)謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的離心率 ,且過(guò)點(diǎn)Q
(1)求橢圓C的方程.
(2)橢圓C長(zhǎng)軸兩端點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A(yíng),B的動(dòng)點(diǎn),定直線(xiàn)x=4與直線(xiàn)PA,PB分別交于M,N兩點(diǎn),直線(xiàn)PA,PB的斜率分別為k1 , k2①證明 ;
②若E(7,0),過(guò)E,M,N三點(diǎn)的圓是否過(guò)x軸上不同于點(diǎn)E的定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論: ①函數(shù) 的值域是(0,+∞);
②直線(xiàn)2x+ay﹣1=0與直線(xiàn)(a﹣1)x﹣ay﹣1=0平行,則a=﹣1;
③過(guò)點(diǎn)A(1,2)且在坐標(biāo)軸上的截距相等的直線(xiàn)的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號(hào)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com