4.已知函數(shù)f(x)=(x4+20x3+3x2+7x+k)(2x3+3x2+kx)(x+k),在0處的導(dǎo)數(shù)為27,則k=(  )
A.-27B.27C.-3D.3

分析 利用導(dǎo)數(shù)的運算法則即可得出.

解答 解:f′(x)=(4x3+60x2+6x+7)(2x3+3x2+kx)(x+k)+(x4+20x3+3x2+7x+k)(6x2+6x+k)(x+k)+(x4+20x3+3x2+7x+k)(2x3+3x2+kx),
∴f′(0)=k3=27,解得k=3.
故選:D.

點評 本題考查了導(dǎo)數(shù)的運算法則、方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,z1=2+ai,z1z2=-4,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在單位圓x2+y2=1中(含邊界)任取一點M,則點M落在第一象限的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若A(1,0),B(0,-1),則|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點($\sqrt{2}$,$\frac{\sqrt{2}}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓E的方程;
(2)設(shè)O為坐標原點,若點A是橢圓上運動,且點A不在y軸上,點B在直線y=t上,且OA⊥OB,是否存在有序?qū)崝?shù)對(t,r)使得直線AB與圓O:x2+y2=r2總相切,若存在,求出所有滿足題意的有序?qū)崝?shù)對(t,r);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.四面體ABCD的四個頂點都在球O的球面上,AB=AD=CD=2,BD=2$\sqrt{2}$,BD⊥CD,平面ABD⊥平面BCD,則球O的體積為( 。
A.4$\sqrt{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若二項式($\frac{\sqrt{5}}{5}$x2+$\frac{1}{x}$)6的展開式中的常數(shù)項為m,則$\int_1^m$(2x2-4x)dx=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A,B,C的對邊分別是a,b,c,已知b=2,c=2$\sqrt{2}$,則C=$\frac{π}{4}$,則△ABC的面積為( 。
A.$2\sqrt{3}+2$B.$\sqrt{3}+1$C.$2\sqrt{3}-2$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.傾斜角為60°的直線與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)交于A,B兩點,若$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{a}$=(4,-$\sqrt{3}$)共線,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案