已知球的半徑為2,相互垂直的兩個(gè)平面分別截球面得兩個(gè)圓.若兩圓的公共弦長(zhǎng)為2,則兩圓的圓心距等于( )
A.1
B.
C.
D.2
【答案】分析:求解本題,可以從三個(gè)圓心上找關(guān)系,構(gòu)建矩形利用對(duì)角線相等即可求解出答案.
解答:解:設(shè)兩圓的圓心分別為O1、O2,球心為O,公共弦為AB,其中點(diǎn)為E,則OO1EO2為矩形,于是對(duì)角線O1O2=OE,而,∴
故選C.
點(diǎn)評(píng):本題考查球的有關(guān)概念,兩平面垂直的性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球O的表面積為16π,且球心O在60°的二面角α-l-β內(nèi)部,若平面α與球相切于M點(diǎn),平面β與球相截,且截面圓O1的半徑為
3
,P為圓O1的圓周上任意一點(diǎn),則M、P兩點(diǎn)的球面距離的最值為

查看答案和解析>>

同步練習(xí)冊(cè)答案