【題目】已知函數f(x)=|2x+1|﹣|x|﹣2 (Ⅰ)解不等式f(x)≥0
(Ⅱ)若存在實數x,使得f(x)≤|x|+a,求實數a的取值范圍.
【答案】解:(Ⅰ)函數f(x)=|2x+1|﹣|x|﹣2= ,
當x<﹣ 時,由﹣x﹣3≥0,可得x≤﹣3.
當﹣ ≤x<0時,由3x﹣1≥0,求得 x∈.
當x≥0時,由x﹣1≥0,求得 x≥1.
綜上可得,不等式的解集為{x|x≤﹣3 或x≥1}.
(Ⅱ)f(x)≤|x|+a,即|x+ |﹣|x|≤ +1①,由題意可得,不等式①有解.
由于|x+ |﹣|x|表示數軸上的x對應點到﹣ 對應點的距離減去它到原點的距離,故|x+ |﹣|x|∈[﹣ , ],
故有 +1≥﹣ ,求得a≥﹣3
【解析】(Ⅰ)化簡函數的解析式,分類討論,求得不等式的解集.(Ⅱ)不等式即|x+ |﹣|x|≤ +1①,由題意可得,不等式①有解.根據絕對值的意義可得|x+ |﹣|x|∈[﹣ , ],故有 +1≥﹣ ,由此求得a的范圍.
科目:高中數學 來源: 題型:
【題目】下列四個結論: ①若x>0,則x>sinx恒成立;
②“若am2<bm2 , 則a<b”的逆命題為真命題
③m∈R,使f(x)=(m﹣1)x 是冪函數,且在(﹣∞,0)上單調遞減
④對于命題p:x∈R使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0
其中正確結論的個數是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ax2﹣lnx﹣2.
(1)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)若a>0,求函數f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個6×6的表格中放3顆完全相同的白棋和3顆完全相同的黑棋,若這6顆棋子不在同一行也不在同一列上,則不同的放法有( )
A.14400種
B.518400種
C.720種
D.20種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某社區(qū)居民的家庭年收入與年支出的關系,隨機調查了該社區(qū)5戶家庭,得到如下統(tǒng)計數據表:
收入x/萬元 | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y/萬元 | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
根據上表可得回歸直線方程x+,其中=0.76, ,據此估計,該社區(qū)一戶居民年收入為15萬元家庭的年支出為_____萬元.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com