已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,S3=21,a3=12
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和.
分析:(1)利用S3=21,a3=12,建立方程組,求出公比與首項(xiàng),從而可求數(shù)列{an}的通項(xiàng)公式;
(2)利用錯(cuò)位相減法,可求數(shù)列{nan}的前n項(xiàng)和.
解答:解:(1)設(shè)首項(xiàng)a1,公比q,由已知q≠1,
a1(1-q3)
1-q
=21
a1q2=12
,∴q=2(q=-
2
3
舍去),a1=3,
an=3×2n-1
(2 )nan=3n×2n-1,設(shè)其前n項(xiàng)和為Tn
∴Tn=3(1×20+2×21+…+n×2n-1)①
∴2Tn=3(1×21+2×22+…+n×2n)②
①-②可得:-Tn=3(20+21+22+…+2n-1-n×2n)=3(
1-2n
1-2
-n×2n
∴Tn=3-3×2n+3n×2n
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查錯(cuò)位相減法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省石家莊高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知各項(xiàng)均為正數(shù)的等比數(shù)列中,的等比中項(xiàng)為,則的最小值為(    )

A.16    B.8    C.    D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧朝陽(yáng)柳城高中高三上第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

 已知各項(xiàng)均為正數(shù)的數(shù)列

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧朝陽(yáng)柳城高中高三上第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知各項(xiàng)均為正數(shù)的數(shù)列,

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;

(2)若的前n項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn

 

查看答案和解析>>

同步練習(xí)冊(cè)答案