【題目】設(shè)函數(shù)的定義域?yàn)?/span>, , 當(dāng)時(shí),, 則函數(shù)在區(qū)間上的所有零點(diǎn)的和為( )
A. B. C. D.
【答案】A
【解析】
根據(jù)f(x)的對(duì)稱性和奇偶性可知f(x)在[﹣,]上共有3條對(duì)稱軸,x=0,x=1,x=2,根據(jù)三角函數(shù)的對(duì)稱性可知y=|cos(πx)|也關(guān)于x=0,x=1,x=2對(duì)稱,故而g(x)在[﹣,]上3條對(duì)稱軸,根據(jù)f(x)和y=|cos(πx)|在[0,1]上的函數(shù)圖象,判斷g(x)在[﹣,]上的零點(diǎn)分布情況,利用函數(shù)的對(duì)稱性得出零點(diǎn)之和.
∵f(x)=f(2﹣x),∴f(x)關(guān)于x=1對(duì)稱,
∵f(﹣x)=f(x),∴f(x)根與x=0對(duì)稱,
∵f(x)=f(2﹣x)=f(x﹣2),∴f(x)=f(x+2),
∴f(x)是以2為周期的函數(shù),
∴f(x)在[﹣,]上共有3條對(duì)稱軸,分別為x=0,x=1,x=2,
又y=|cos(πx)關(guān)于x=0,x=1,x=2對(duì)稱,
∴x=0,x=1,x=2為g(x)的對(duì)稱軸.
作出y=|cos(πx)|和y=x3在[0,1]上的函數(shù)圖象如圖所示:
由圖象可知g(x)在(0,)和(,1)上各有1個(gè)零點(diǎn).
又g(1)=0,∴g(x)在[﹣,]上共有7個(gè)零點(diǎn),
設(shè)這7個(gè)零點(diǎn)從小到大依次為x1,x2,x3,…x6,x7.
則x1,x2關(guān)于x=0對(duì)稱,x3,x5關(guān)于x=1對(duì)稱,x4=1,x6,x7關(guān)于x=2對(duì)稱.
∴x1+x2=0,x3+x5=2,x6+x7=4,
∴x1+x2+x3+x4+x5+x6+x7=7.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)行籃球三分球投籃比賽,甲每次投中的概率為,乙每次投中的概率為,每人分別進(jìn)行三次投籃.
(I)記甲投中的次數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投進(jìn)2次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱柱中,,為中點(diǎn),為中點(diǎn).
(1)證明:平面;
(2)若直線與平面所成的角為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形沿對(duì)角線折成直二面角,
①與平面所成角的大小為
②是等邊三角形
③與所成的角為
④
⑤二面角為
則上面結(jié)論正確的為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,準(zhǔn)線為,與軸的交點(diǎn)為,點(diǎn)在拋物線上,過點(diǎn)作于點(diǎn),如圖1.已知,且四邊形的面積為.
(1)求拋物線的方程;
(2)若正方形的三個(gè)頂點(diǎn),,都在拋物線上(如圖2),求正方形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABCD中,側(cè)面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M為PC的中點(diǎn).
(1)求證:PC⊥AD.
(2)在棱PB上是否存在一點(diǎn)Q,使得A,Q,M,D四點(diǎn)共面?若存在,指出點(diǎn)Q的位置并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),M是PD的中點(diǎn).
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國(guó)慶期間,一位游客來到某旅游城市,這里有甲、乙、丙三個(gè)著名的旅游景點(diǎn),若這位游客游覽這三個(gè)景點(diǎn)的概率分別是,且客人是否游覽哪個(gè)景點(diǎn)互不影響,設(shè)表示客人離開該城市時(shí)游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對(duì)值.
(Ⅰ)求的分布列和數(shù)學(xué)期望;
(Ⅱ)記“時(shí),不等式恒成立”為事件,求事件發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com