數(shù)學(xué)公式數(shù)學(xué)公式,則x滿足


  1. A.
    x>0
  2. B.
    x<0
  3. C.
    x≤0
  4. D.
    x≥0
B
分析:根據(jù)題中不等式的結(jié)構(gòu),考察冪函數(shù)y=tα,當(dāng)α<0時(shí)它在(0,+∞)上是減函數(shù),從而建立關(guān)于 x的不等關(guān)系,即可求出實(shí)數(shù)x的取值范圍.
解答:考察冪函數(shù)y=tα,當(dāng)α<0時(shí)它在(0,+∞)上是減函數(shù),

∴x<0,
則實(shí)數(shù)x的取值范圍x<0.
故選B.
點(diǎn)評(píng):本題主要考查了冪函數(shù)的單調(diào)性及其應(yīng)用,構(gòu)造出冪函數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)已知函數(shù)f(x)滿足f(x)=2f(
1
x
)
,當(dāng)x∈[1,3]時(shí),f(x)=lnx,若在區(qū)間[
1
3
,3]
內(nèi),函數(shù)g(x)=f(x)-ax,有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
b|x|
(x≠0)

(1)若函數(shù)f(x)是(0,+∞)上的增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)b=2時(shí),若不等式f(x)<x在區(qū)間(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)g(x)若存在區(qū)間[m,n](m<n),使x∈[m,n]時(shí),函數(shù)g(x)的值域也是[m,n],則稱g(x)是[m,n]上的閉函數(shù).若函數(shù)f(x)是某區(qū)間上的閉函數(shù),試探求a,b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)若函數(shù)f(x)是(0,+∞)上的增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)b=2時(shí),若不等式f(x)<x在區(qū)間(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)g(x)若存在區(qū)間[m,n](m<n),使x∈[m,n]時(shí),函數(shù)g(x)的值域也是[m,n],則稱g(x)是[m,n]上的閉函數(shù).若函數(shù)f(x)是某區(qū)間上的閉函數(shù),試探求a,b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=a-
b
|x|
(x≠0)

(1)若函數(shù)f(x)是(0,+∞)上的增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)b=2時(shí),若不等式f(x)<x在區(qū)間(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)g(x)若存在區(qū)間[m,n](m<n),使x∈[m,n]時(shí),函數(shù)g(x)的值域也是[m,n],則稱g(x)是[m,n]上的閉函數(shù).若函數(shù)f(x)是某區(qū)間上的閉函數(shù),試探求a,b應(yīng)滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案