【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期低于平均數(shù)的患者,稱為“短潛伏者”,潛伏期不低于平均數(shù)的患者,稱為“長(zhǎng)潛伏者”.
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長(zhǎng)潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長(zhǎng)短與患者年齡有關(guān);
短潛伏者 | 長(zhǎng)潛伏者 | 合計(jì) | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計(jì) | 300 |
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)平均數(shù)6;人數(shù)250人(2)見解析,有97.5%的把握認(rèn)為潛伏期長(zhǎng)短與年齡有關(guān)
【解析】
(1)用各個(gè)矩形的面積乘以矩形底邊的中點(diǎn)值再相加即可得到平均數(shù),用樣本容量乘以頻率可得頻數(shù);
(2)根據(jù)分層抽樣完善列聯(lián)表,根據(jù)公式計(jì)算出的值,結(jié)合臨界值表可得結(jié)論.
(1)平均數(shù)為.
“長(zhǎng)潛伏者”即潛伏期時(shí)間不低于6天的頻率為,
所以500人中“長(zhǎng)潛伏者”的人數(shù)為人
(2)因?yàn)?/span>500人中“長(zhǎng)潛伏者”的人數(shù)為250人,“短潛伏者”的人數(shù)為250人,
按分層抽樣可知,300人中“長(zhǎng)潛伏者”的人數(shù)為150人,“短潛伏者”的人數(shù)為150人,
因?yàn)?/span>60歲及以上的“短潛伏者”的人數(shù)為90人,所以60歲以下的“短潛伏者”的人數(shù)為60人,
又60歲以下的人數(shù)為140人,所以60歲以下的“長(zhǎng)潛伏者”的人數(shù)為80人,所以60歲及以上的“長(zhǎng)潛伏者”的人數(shù)為70人,由此可得補(bǔ)充后的列聯(lián)表如圖:
短潛伏者 | 長(zhǎng)潛伏者 | 合計(jì) | |
60歲及以上 | 90 | 70 | 160 |
60歲以下 | 60 | 80 | 140 |
合計(jì) | 150 | 150 | 300 |
所以的觀測(cè)值為,
經(jīng)查表,得,所以有97.5%的把握認(rèn)為潛伏期長(zhǎng)短與年齡有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對(duì)于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽在《周髀算經(jīng)》中注釋了其理論證明,其基本思想是圖形經(jīng)過割補(bǔ)后面積不變.即通過如圖所示的“弦圖”,將勻股定理表述為:“勾股各自乘,并之,為弦實(shí),開方除之,即弦”(其中分別為勾股弦);證明方法敘述為:“按弦圖,又可以勾股相乘為朱實(shí)二,倍之為朱實(shí)四,以勾股之差自相乘為中黃實(shí),加差實(shí),亦成弦實(shí)”,即,化簡(jiǎn)得.現(xiàn)已知,,向外圍大正方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,飛鏢落在中間小正方形內(nèi)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的圖像經(jīng)過點(diǎn),且關(guān)于直線對(duì)稱,則下列結(jié)論正確的是( )
A. 在上是減函數(shù)
B. 函數(shù)的最小正周期為
C. 的解集是,
D. 的一個(gè)對(duì)稱中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),其焦點(diǎn)在軸正半軸上,為直線上一點(diǎn),圓與軸相切(為圓心),且,關(guān)于點(diǎn)對(duì)稱.
(1)求圓和拋物線的標(biāo)準(zhǔn)方程;
(2)過的直線交圓于,兩點(diǎn),交拋物線于,兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),且離心率.
(1)求橢圓的方程;
(2)直線的斜率為,直線與橢圓交于、兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過直線上的點(diǎn)作橢圓的切線,切點(diǎn)分別為,聯(lián)結(jié).
(1)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),證明:直線恒過定點(diǎn);
(2)當(dāng)時(shí),定點(diǎn)平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】影片《紅海行動(dòng)》里的“蛟龍突擊隊(duì)”在奉命執(zhí)行撤僑過程中,海軍艦長(zhǎng)要求隊(duì)員們依次完成6項(xiàng)任務(wù),并對(duì)任務(wù)的順序提出了如下要求:重點(diǎn)任務(wù)A必須排在第2位,且任務(wù)E、F必須排在一起,則這6項(xiàng)任務(wù)的不同安排方案共有( )
A.18種B.36種C.144種D.216種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定整數(shù)(),設(shè)集合,記集合.
(1)若,求集合;
(2)若構(gòu)成以為首項(xiàng),()為公差的等差數(shù)列,求證:集合中的元素個(gè)數(shù)為;
(3)若構(gòu)成以為首項(xiàng),為公比的等比數(shù)列,求集合中元素的個(gè)數(shù)及所有元素之和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com