已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對任意,總存在,使得.
(1)f(x)在(1,2)單調(diào)遞減函數(shù),f(x)在(2,+∞)單調(diào)遞增函數(shù);(2)證明過程詳見解析.
解析試題分析:本題主要考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式等基礎(chǔ)知識,考查函數(shù)思想、分類討論思想,考查綜合分析和解決問題的能力.第一問,先對求導(dǎo),而分子還比較復(fù)雜,所以對分子進行二次求導(dǎo),導(dǎo)數(shù)非負,所以分子所對函數(shù)為增函數(shù),而,所以在上,在上,所以在為負值,在上為正值,所以得出的單調(diào)性;第二問,先對已知進行轉(zhuǎn)化,轉(zhuǎn)化為恒成立,而,即轉(zhuǎn)化為恒成立,再次轉(zhuǎn)化為,通過求導(dǎo)判斷函數(shù)的單調(diào)性,判斷的正負.
試題解析:(1) 1分
設(shè),
∴在是增函數(shù),又 3分
∴當(dāng)時, ,則,是單調(diào)遞減函數(shù);
當(dāng)時, ,則,是單調(diào)遞增函數(shù).
綜上知:在單調(diào)遞減函數(shù),
在單調(diào)遞增函數(shù) 6分
(2)對任意,總存在,使得恒成立
等價于恒成立,而,即證恒成立.等價于,
也就是證 8分
設(shè), 10分
∴在單調(diào)遞增函數(shù),又
∴當(dāng)時,,則
當(dāng)時,,則
綜上可得:對任意,總存在,
使得. 12分
考點:1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.恒成立問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(,)。
⑴若,求在上的最大值和最小值;
⑵若對任意,都有,求的取值范圍;
⑶若在上的最大值為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,如果函數(shù)僅有一個零點,求實數(shù)的取值范圍;
(2)當(dāng)時,試比較與1的大;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時,都取得極值.
(1)求的值;
(2)若,求的單調(diào)區(qū)間和極值;
(3)若對都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
(1)當(dāng)時,函數(shù)在處有極小值,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)和有相同的極大值,且函數(shù)在區(qū)間上的最大值為,求實數(shù)的值(其中是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實數(shù)函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及最小值;
(Ⅱ)若≥對任意的恒成立,求實數(shù)的值;
(Ⅲ)證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com