.數(shù)列{a}滿足S= 2n-a, n∈N
⑴計(jì)算a、a、a、a,并由此猜想通項(xiàng)公式a
(2)用數(shù)字歸納法證明(1)中的猜想.
(1)a=   ( n∈N)
(2)略
解:  (1) a=1、a=、a=、a=
猜想a=   ( n∈N)
證明:①當(dāng)n = 1時(shí),a = 1結(jié)論成立
②假設(shè)n =" K" (K≥1)時(shí),結(jié)論成立
即a=, 那么n=k+1時(shí)
a=S-S="2(k+1)" -a-2k+
=2+a-a
∴2 a="2+" a
∴a===
這表明n=k+1時(shí),結(jié)論成立
∴a=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列,點(diǎn) 在函數(shù)的圖象上,.?dāng)?shù)列的前n項(xiàng)和為,且滿足當(dāng)時(shí), 
(1)證明數(shù)列是等比數(shù)列;
(2)求;
(3)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列
(I)設(shè)的通項(xiàng)公式;
(II)當(dāng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
在數(shù)列{an}中,已知,a1=2,an+1 an+1 an=2 an.對(duì)于任意正整數(shù)
(1)求數(shù)列{an}的通項(xiàng)an的表達(dá)式;
(2)若 為常數(shù),且為整數(shù)),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)
設(shè)正項(xiàng)等差數(shù)列的前n項(xiàng)和為,其中是數(shù)列中滿足的任意項(xiàng).
(1)求證:;
(2)若也成等差數(shù)列,且,求數(shù)列的通項(xiàng)公式;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知數(shù)列滿足(n≥1)(≠2)
(1)求 , ,;
(2)推測(cè)數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則數(shù)列的前n項(xiàng)和為     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

填空題:(本小題滿分4分)同學(xué)們都知道,在一次考試后,如果按順序去掉一些高分,那么班級(jí)的平均分將降低; 反之,如果按順序去掉一些低分,那么班級(jí)的平均分將提高. 這兩個(gè)事實(shí)可以用數(shù)學(xué)語言描述為:若有限數(shù)列 滿足,則                   
                                                     (結(jié)論用數(shù)學(xué)式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)等差數(shù)列的前項(xiàng)和為
(I)求數(shù)列的通項(xiàng)公式;
(II)若,求

查看答案和解析>>

同步練習(xí)冊(cè)答案