【題目】若關(guān)于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,3)內(nèi),記點(a,b)對應的區(qū)域為S.
(1)設z=2a﹣b,求z的取值范圍;
(2)過點(﹣5,1)的一束光線,射到x軸被反射后經(jīng)過區(qū)域S,求反射光線所在直線l經(jīng)過區(qū)域S內(nèi)的整點(即橫縱坐標為整數(shù)的點)時直線l的方程.

【答案】
(1)解:解:方程x2+ax+b=0的兩根在區(qū)間(0,1)和(1,3)上的幾何意義是:

函數(shù)y=f(x)=x2+ax+b與x軸的兩個交點的橫坐標分別在區(qū)間(0,1)和(1,3)內(nèi),

由此可得不等式組

,即 ,

則在坐標平面aOb內(nèi),點(a,b)對應的區(qū)域S如圖陰影部分所示,

易得圖中A,B,C三點的坐標分別為(﹣4,3),(﹣3,0),(﹣1,0),

令z=2a﹣b,則直線b=2a﹣z經(jīng)過點A時z取到下邊界﹣11,經(jīng)過點C時z取到上邊界﹣2,又A,B,C三點的值沒有取到,所以﹣11<z<﹣2;


(2)解:過點(﹣5,1)的光線經(jīng)x軸反射后的光線必過點(﹣5,﹣1),由圖可知

可能滿足條件的整點為(﹣3,1),(﹣3,2),(﹣2,2),(﹣2,1),

再結(jié)合不等式知點(﹣3,1)符合條件,所以此時直線方程為:y+1= ﹣(x+5),

即y=x+4


【解析】(1)令f(x)=x2+ax+b,根據(jù)題意可知f(0)>0,f(1)<0,f(3)>0,進而求得b>0,a+b+1<0,a+b+9>0,畫出可行域,進而分別求得z的最大和最小值,答案可得.(2)過點(﹣5,1)的光線經(jīng)x軸反射后的光線必過點(﹣5,﹣1),由圖可知,找出可能滿足條件的整點,再結(jié)合不等式知點(﹣3,1)符合條件,得到此時直線方程即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)2017年的純利潤為500萬元,因設備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進行技術(shù)改造,預測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進行技術(shù)改造,預測在未扣除技術(shù)改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數(shù)).

(1)設從今年起的前年,若該企業(yè)不進行技術(shù)改造的累計純利潤為萬元,進行技術(shù)改造后的累計純利潤為萬元(須扣除技術(shù)改造資金),求,的表達式;

(2)依上述預測,從2018年起該企業(yè)至少經(jīng)過多少年,進行技術(shù)改造后的累計利潤超過不進行技術(shù)改造的累計純利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程是為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于兩點.

(Ⅰ)求直線的普通方程及曲線的直角坐標方程;

(Ⅱ)把直線軸的交點記為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a為實數(shù),函數(shù)f(x)=x2﹣|x2﹣ax﹣2|在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,則a的取值范圍為(
A.[1,8]
B.[3,8]
C.[1,3]
D.[﹣1,8]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若四面體的三組對棱分別相等,即,,則________.(寫出所有正確結(jié)論的編號)

①四面體每個面的面積相等

②四面體每組對棱相互垂直

③連接四面體每組對棱中點的線段相互垂直平分

④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“節(jié)約用水”自古以來就是中華民族的優(yōu)良傳統(tǒng).某市統(tǒng)計局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如下圖所示.將月用水量落入各組的頻率視為概率,并假設每天的用水量相互獨立.

(l)求在未來連續(xù)3個月里,有連續(xù)2個月的月用水量都不低于12噸且另1個月的月用水量低于4噸的概率;

(2)用表示在未來3個月里月用水量不低于12噸的月數(shù),求隨杌變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,i是虛數(shù)單位,命題p:在復平面內(nèi),復數(shù)z1=a+ 對應的點位于第二象限;命題q:復數(shù)z2=a﹣i的模等于2,若p∧q是真命題,則實數(shù)a的值等于(
A.﹣1或1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知: =(﹣ sinωx,cosωx), =(cosωx,cosωx),ω>0,記函數(shù)f(x)= ,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習冊答案