設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x-2x+b(b為常數(shù)),則f(-1)=( 。
A、
4
3
B、1
C、-1
D、0
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)為定義在R上的奇函數(shù),則f(0)=0,f(-x)=-f(x),求出b=-1,再由奇函數(shù)的定義,即可得到f(-1).
解答: 解:f(x)為定義在R上的奇函數(shù),
則f(0)=0,f(-x)=-f(x),
即有30-2×0+b=0,即有b=-1,
即當(dāng)x≥0時(shí),f(x)=3x-2x-1,
則f(-1)=-f(1)=-(3-2-1)=0,
故選D.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的性質(zhì)和運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2
π
4
x-
3
sin
π
4
xcos
π
4
x
(1)求f(x)的最大值及此時(shí)x的值;
(2)求f(1)+f(2)+f(3)+…+f(2011)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:“?x∈[0,+∞),2x-a≥0”,命題q:“?x0∈R,x02+2ax0+2-a=0”,若“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-1>0},B={x|2x-2>0},A∩B等于( 。
A、{x|x>1}
B、{x|x>0}
C、{x|x<-1}
D、{x|x<-1或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={x|x≤-1},a=-2,則a與集合A的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a3,a8是方程x2+3x-5=0的兩個(gè)根,則S10是(  )
A、15
B、-15
C、50
D、15+12
29

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2sin100°-cos70°
cos20°
=( 。
A、4
B、2
3
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
log
1
2
x-1
的定義域?yàn)椋ā 。?/div>
A、(0,
1
2
]
B、(
1
2
,+∞)
C、(0,
1
2
D、(-∞,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)=x+
1
x
-(lnx)2,(x>0).
(1)求函數(shù)g(x)的最小值;
(2)證明不等式:
n
k=1
1
2k(2k+1)
>ln
2n+1
2n+1
(n∈N* ).

查看答案和解析>>

同步練習(xí)冊(cè)答案