(本小題滿分14分)某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地市規(guī)劃部門計(jì)劃利用它建設(shè)一個(gè)供市民休閑健身的小型綠化廣場(chǎng),如下圖所示是步行小道設(shè)計(jì)方案示意圖,
其中,分別表示自西向東,自南向北的兩條主干道.設(shè)計(jì)方案是自主干道交匯點(diǎn)處修一條步行小道,小道為拋物線的一段,在小道上依次以點(diǎn)
為圓心,修一系列圓型小道,這些圓型小道與主干道相切,且任意相鄰的兩圓彼此外切,若(單位:百米)且.
(1)記以為圓心的圓與主干道切于點(diǎn),證明:數(shù)列是等差數(shù)列,并求關(guān)于的表達(dá)式;
(2)記的面積為,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為的圓型小道的施工工時(shí)為(單位:周).試問5周時(shí)間內(nèi)能否完成前個(gè)圓型小道的修建?請(qǐng)說明你的理由.
(1). (2) 5周內(nèi)能完成前個(gè)圓型小道的修建工作.
【解析】(1) 由題意知的半徑.再根據(jù)與彼此相切,得,=,平方整理可證明結(jié)論.
(2) 由于,所以可得=
<
再裂項(xiàng)求和即可證明結(jié)論.
解:(1)依題設(shè)的半徑.
與彼此相切,,
=,
兩邊平方整理得:,又,
,.
是等差數(shù)列,首項(xiàng)為1,公差為2.
,即.…………………………8分
(2),
設(shè)前幾個(gè)圓型小道的施工總工時(shí)為
=
<
.
故5周內(nèi)能完成前個(gè)圓型小道的修建工作.……………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com