設(shè)函數(shù)y=f(x)的定義域為R+,若對于給定的正數(shù)K,定義函數(shù),則當(dāng)函數(shù)f(x)=,K=1時,(x)dx的值為( )
A.2ln2
B.2ln2-1
C.2ln2
D.2ln2+1
【答案】分析:把k=1得入求得此分段函數(shù)的函數(shù)值并求出相應(yīng)x的取值范圍,然后利用定積分的可加性方法,求出定積分的值即可.
解答:解:因為函數(shù)f(x)=,K=1時,f1(x)=⇒f1(x)=
(x)dx=+∫121dx=1+2ln2
故選D
點評:考查學(xué)生理解分段函數(shù)及會求分式不等式解集的能力,以及會定積分的計算及定積分的可加性的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域為R,并且滿足f(x+y)=f(x)+f(y),f(
13
)=1
,且當(dāng)x>0時,f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域為全體R,當(dāng)x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y)成立,數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求證:y=f(x)是R上的減函數(shù);          
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
對一切n∈N*均成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域為R+,若對于給定的正數(shù)k,定義函數(shù):fk(x)=
k,f(x)≤k
f(x),f(x)>k
,則當(dāng)函數(shù)f(x)=
1
x
,k=1
時,函數(shù)fk(x)的圖象與直線x=
1
4
,x=2,y=0圍成的圖形的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閔行區(qū)一模)(文)設(shè)函數(shù)y=f(x)的反函數(shù)是y=f-1(x),且函數(shù)y=f(x)過點P(2,-1),則f-1(-1)=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)設(shè)函數(shù)y=f(x)的定義域為R,對任意實數(shù)x,y都有f(x+y)=f(x)+f(y),當(dāng)x>0時f(x)<0且f(3)=-4.
(1)求證:y=f(x)為奇函數(shù);
(2)在區(qū)間[-9,9]上,求y=f(x)的最值.

查看答案和解析>>

同步練習(xí)冊答案