(不等式選做題)若不等式|x+2|+|x-3|≥a+
4
a-1
對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):絕對(duì)值不等式的解法
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:不等式|x+2|+|x-3|≥a+
4
a-1
對(duì)任意的實(shí)數(shù)x恒成立轉(zhuǎn)化為a+
4
a-1
小于等于函數(shù)y=|x+2|+|x-3|的最小值,根據(jù)絕對(duì)值不等式的幾何意義可知函數(shù)y=|x+2|+|x-3|的最小值為5,因此原不等式轉(zhuǎn)化為分式不等式的求解問(wèn)題.
解答: 解:令y=|x+2|+|x-3|,
由絕對(duì)值不等式的幾何意義可知函數(shù)y=|x+2|+|x-3|的最小值為5,
∵不等式|x+2|+|x-3|≥a+
4
a-1
對(duì)任意的實(shí)數(shù)x恒成立,
∴原不等式可化為a+
4
a-1
≤5,
解得a=3或a<1,
故答案為:(-∞,1)∪{3}.
點(diǎn)評(píng):考查絕對(duì)值不等式的幾何意義,把恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,體現(xiàn)了轉(zhuǎn)化的思想方法,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+
π
12
)=
1
4
,則sin(
12
-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,三個(gè)內(nèi)角A、B、C對(duì)應(yīng)的三邊長(zhǎng)分別為a、b、c,且有4bcosAcosB=9asin2B.
(1)求tanA-tanB的值;
(2)求tanC的最大值,并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={0,1,2,3},A={1,2},則∁UA=( 。
A、{1,2}
B、{0,3}
C、{0,1}
D、{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={(x,y)|y=ax+1},B={(x,y)|y=x+3},且A∩B={(2,5)},則( 。
A、a=3B、a=2
C、a=-3D、a=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Ω:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
3
,且經(jīng)過(guò)點(diǎn)(1,
3
2
).
(Ⅰ)求橢圓Ω的方程;
(Ⅱ)A是橢圓Ω與y軸正半軸的交點(diǎn),橢圓Ω上是否存在兩點(diǎn)M、N,使得△AMN是以A為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)說(shuō)明有幾個(gè);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2≤2,a3≤4,a1+a4≥4,當(dāng)a4取得最大值時(shí),數(shù)列{an}的公差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 a、b為平面向量,若a+b與a的夾角為
π
3
,a+b與b的夾角為
π
4
,則
|a|
|b|
=( 。
A、
3
3
B、
5
3
C、
6
3
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,頂點(diǎn)B,C的坐標(biāo)分別為B(-3,0),C(3,0),AC,BC邊上的兩條中線BD,CE之和為12,則△ABC的重心G的軌跡方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案