20.設P是拋物線x2=8y上一動點,F(xiàn)為拋物線的焦點,A(1,2),則|PA|+|PF|的最小值為4.

分析 根據拋物線的標準方程 求出焦點坐標和準線方程,利用拋物線的定義可得|PA|+|PF|=|PA|+|PM|≥|AM|,故|AM|(A到準線的距離)為所求.

解答 解:拋物線標準方程x2=8y,p=4,焦點F(0,2),準線方程為y=-2.
設p到準線的距離為d,則PF=d,
所以求PA+PF的最小值就是求PA+d的最小值
顯然,直接過A做y=-2的垂線AQ,當P是AQ與拋物線的交點時,PA+d有最小值
最小值為AQ=2-(-2)=4,
故答案為4.

點評 本題考查拋物線的定義、標準方程,以及簡單性質的應用,得到|PA|+|PF|=|PA|+|PM|≥|AM|,是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知等差數(shù)列{an}中,a2=3,a4=7,若bn=a2n,
(1)求bn;
(2)求$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=x(3-2x)($0<x<\frac{3}{2}$)的最大值是(  )
A.$\frac{9}{8}$B.$\frac{9}{4}$C.$\frac{3}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設△ABC的內角A,B,C的對邊分別為a,b,c,A為鈍角,且b=atanB.
(1)證明:$A-B=\frac{π}{2}$;
(2)求sinB+2sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在極坐標系中,圓C1:ρ=4cosθ與圓C2:ρ=2sinθ相交于A,B兩點,則|AB|=( 。
A.2B.$\sqrt{2}$C.$\frac{{4\sqrt{5}}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知動圓M過定點F(1,0),且與直線x=-1相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點F且斜率為2的直線交軌跡C于S,T兩點,求弦ST的長度;
(3)已知點B(-1,0),設不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知拋物線y2=4x的焦點為F,A、B,為拋物線上兩點,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O為坐標原點,則△AOB的面積為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖:若0<a<1,函數(shù)y=ax與y=x+a的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖所示,函數(shù)$y={|x|^{\frac{1}{3}}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案