已知菱形ABCD的頂點(diǎn)A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1。
(1)當(dāng)直線BD過點(diǎn)(0,1)時,求直線AC的方程;
(2)當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值。
解:(1)由題意得直線BD的方程為
因?yàn)樗倪呅?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.1010pic.com/pic1/upload/papers/g02/20111119/20111119152219171934.gif">為菱形,
所以
于是可設(shè)直線AC的方程為

因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.1010pic.com/pic1/upload/papers/g02/20111119/20111119152219312897.gif">在橢圓上,
所以,解得
設(shè)兩點(diǎn)坐標(biāo)分別為,
,,,
所以
所以AC的中點(diǎn)坐標(biāo)為
由四邊形為菱形可知,點(diǎn)在直線上,
所以,解得
所以直線AC的方程為,即
(2)因?yàn)樗倪呅?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.1010pic.com/pic1/upload/papers/g02/20111119/20111119152219937934.gif">為菱形,且,
所以
所以菱形的面積
由(1)可得,
所以
所以當(dāng)時,菱形的面積取得最大值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(1)求橢圓C1的方程;
(2)已知菱形ABCD的頂點(diǎn)A,C在橢圓C1上,對角線BD所在的直線的斜率為1.
①當(dāng)直線BD過點(diǎn)(0,
1
7
)時,求直線AC的方程;
②當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(I)求橢圓C1的方程;   
(Ⅱ)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線7x-7y+1=0上,求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知菱形ABCD的頂點(diǎn)A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.
(Ⅰ)當(dāng)直線BD過點(diǎn)(0,1)時,求直線AC的方程;
(Ⅱ)當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年北京市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知菱形ABCD的頂點(diǎn)A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.
(Ⅰ)當(dāng)直線BD過點(diǎn)(0,1)時,求直線AC的方程;
(Ⅱ)當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;  (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

同步練習(xí)冊答案