如圖,直角梯形中,
橢圓為焦點(diǎn)且過點(diǎn)

(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(2)若點(diǎn)E滿足是否存在斜率的直線與橢圓交于兩點(diǎn),且,若存在,求的取值范圍;若不存在,說明理由。
(1)(2)
(1)以AB所在直線為x軸,AB中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系
在RT中,

設(shè)橢圓F的方程為
 ∴        ∴
                                      3分

(2)      由
當(dāng)直線L斜率不存在時,不滿足   設(shè)L的方程為
代入  得
則L與橢圓有兩個不同公共點(diǎn)的充要條件為
                     5分
               
設(shè) ,MN的中點(diǎn)為 
等價于 
               6分
                                7分
得       得        8分
代入得                          9分
                                   10分
或者用點(diǎn)差法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)正方體ABCDA1B1C1D1 的棱長為 2,且AC BD 交于點(diǎn)O,E 為棱DD1 中點(diǎn),以A 為原點(diǎn),建立空間直角坐標(biāo)系Axyz,如圖所示.
(Ⅰ)求證:B1O⊥平面EAC;
(Ⅱ)若點(diǎn) F EA 上且 B1FAE,試求點(diǎn) F 的坐標(biāo);
(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點(diǎn).

(Ⅰ) 證明:OD//平面ABC;
(Ⅱ)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?
若能,請指出點(diǎn)N的位置,并加以證明;
若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
如圖,在四邊形中,垂直平分,且,現(xiàn)將四邊形沿折成直二面角,求:
(1)求二面角的正弦值;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
如圖,在四棱錐中,底面是正方形,其他四個側(cè)面都是等邊三角形,的交點(diǎn)為O.
(Ⅰ)求證:平面;
(Ⅱ)已知為側(cè)棱上一個動點(diǎn). 試問對于上任意一點(diǎn),平面與平面是否垂直?若垂直,請加以證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從空間一點(diǎn)O出發(fā)的四條射線兩兩所成的角都是θ,則θ一定是
A.銳角B.直角C.鈍角D.銳角或鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,為正方體的棱的中點(diǎn),為棱上一點(diǎn),,則        (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在棱長為3的正四面體ABCD中,點(diǎn)E是線段AB上一點(diǎn),且AE="1," 點(diǎn)F是線段AD上一點(diǎn),且AF=2,則異面直線DECF的夾角的余弦為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若兩條異面直線所成的角為,則稱這對異面直線為“理想異面直線對”,在連結(jié)正方體各頂點(diǎn)的所有直線中,“理想異面直線對”的對數(shù)為
A.24B.48C.72D.78

查看答案和解析>>

同步練習(xí)冊答案