在數(shù)列和等比數(shù)列中,,,.
(Ⅰ)求數(shù)列及的通項公式;
(Ⅱ)若,求數(shù)列的前項和.
(Ⅰ),;(Ⅱ).
【解析】
試題分析:(Ⅰ)先利用數(shù)列是等比數(shù)列,結(jié)合,計算出數(shù)列的首項和公比,從而確定等比數(shù)列的通項公式,然后間接地求出數(shù)列的通項公式;解法二是先由數(shù)列是等比數(shù)列,結(jié)合定義證明數(shù)列是等差數(shù)列,然后將題設(shè)條件化為是有關(guān)數(shù)列的首項和公差的二元一次方程組,求出首項和公差的值進(jìn)而求出數(shù)列的通項公式,最后確定等比數(shù)列的通項公式;
(Ⅱ)先根據(jù),即數(shù)列的每一項均為等差數(shù)列中的項乘以等比數(shù)列中的項,結(jié)合利用錯位相減法即可求出數(shù)列的前項和.
試題解析:解法一:(Ⅰ)依題意,, 2分
設(shè)數(shù)列的公比為,由,可知, 3分
由,得,又,則, 4分
故, 5分
又由,得. 6分
(Ⅱ)依題意. 7分
, ①
則 ② 9分
①-②得, 11分
即,故. 12分
解法二:(Ⅰ)依題意為等比數(shù)列,則(常數(shù)),
由,可知, 2分
由,
得(常數(shù)),故為等差數(shù)列, 4分
設(shè)的公差為,由,,得,
故. 6分
(Ⅱ)同解法一.
考點:等差數(shù)列通項公式、等比數(shù)列的通項公式、錯位相減法
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東湛江市普通高考測試卷(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
在正項等比數(shù)列中,公比,且和的等比中項是.
(1)求數(shù)列的通項公式;
(2)若,判斷數(shù)列的前項和是否存在最大值,若存在,求出使最大時的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市高三八校聯(lián)合調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
在等差數(shù)列和等比數(shù)列中,,,是前項和.
(1)若,求實數(shù)的值;
(2)是否存在正整數(shù),使得數(shù)列的所有項都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;
(3)是否存在正實數(shù),使得數(shù)列中至少有三項在數(shù)列中,但中的項不都在數(shù)列中?若存在,求出一個可能的的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市高三八校聯(lián)合調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
在等差數(shù)列和等比數(shù)列中,,,是前項和.
(1)若,求實數(shù)的值;
(2)是否存在正整數(shù),使得數(shù)列的所有項都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;
(3)是否存在正實數(shù),使得數(shù)列中至少有三項在數(shù)列中,但中的項不都在數(shù)列中?若存在,求出一個可能的的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省高三第三次考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本題滿分12分)在數(shù)列和中,,,,其中且,.
(Ⅰ)證明:當(dāng)時,數(shù)列中的任意三項都不能構(gòu)成等比數(shù)列;
(II)設(shè),,試問在區(qū)間上是否存在實數(shù)使得.若存在,求出的一切可能的取值及相應(yīng)的集合;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com