如圖,在正方體
中,點
在線段
上移動,則異面直線
與
所成的角
的取值范圍( )
試題分析:∵
,∴CP與
成角可化為CP與
成角.
∵△A
是正三角形可知當(dāng)P與A重合時成角為
,
∵P不能與
重合因為此時
與
平行而不是異面直線,
∴
,故選A.
點評:基礎(chǔ)題,立體幾何問題中,平行關(guān)系、垂直關(guān)系、角的計算、距離的計算、面積的計算、體積計算等,是高考?純(nèi)容。就計算問題而言,“幾何法”要遵循“一作、二證、三計算”。利用空間向量可簡化證明過程。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,
矩形ABCD所在的平面,M,N分別為AB,PC的中點。求證:
平面
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱柱ABC-A
1B
1C
1中,E,F(xiàn),G,H分別是AB,AC,A
1B
1,A
1C
1的中點,求證:
(1)B,C,H,G四點共面;
(2)平面EFA
1∥平面BCHG.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
正方體
的棱線長為1,面對角線
上有兩個動點E,F(xiàn),且
,則下列四個結(jié)論中①
②
平面
③三棱錐
的體積為定值 ④異面直線
所成的角為定值,其中正確的個數(shù)是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
以下對于幾何體的描述,錯誤的是( )
A.以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的旋轉(zhuǎn)體叫做球 |
B.一個等腰三角形繞著底邊上的高所在直線旋轉(zhuǎn)180º形成的封閉曲面所圍成的圖形叫做圓錐 |
C.用平面去截圓錐,底面與截面之間的部分叫做圓臺 |
D.以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體叫做圓柱 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,在直三棱柱
中,
,
分 別是棱
上的點(點
不同于點
),且
為
的中點.
求證:(1)平面
平面
(2)直線
平面
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.試探究點M的位置,使F—AE—M為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
三視圖如下的幾何體的體積為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知三棱錐
各側(cè)棱長均為
,三個頂角均為
,M,N分別為PA,PC上的點,求
周長的最小值.
查看答案和解析>>