【題目】已知函數(shù).
(1)若且,求的單調(diào)區(qū)間;
(2)若在處取得最大值,求實數(shù)的取值范圍.
【答案】(1)在單調(diào)遞增,在單調(diào)遞減;(2).
【解析】
當(dāng)時,求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的符號,即可求解函數(shù)的單調(diào)區(qū)間;
求得函數(shù)導(dǎo)數(shù),構(gòu)造新函數(shù),求得的導(dǎo)數(shù),分,,,四種情況討論,求得的單調(diào)性與最值,得出單調(diào)性,即可求解的極值,進(jìn)而得到的范圍.
當(dāng)時,,
則,
,
令,
,
∴在單調(diào)遞增,在單調(diào)遞減.
由已知得,
則,
記,
則,,
①當(dāng),時,
,函數(shù)單調(diào)遞增,
所以當(dāng)時,,
當(dāng)時,,
所以在處取得極小值也是最小值,不滿足題意.
②當(dāng)時,時,
,函數(shù)單調(diào)遞增.
可得當(dāng)時,,
當(dāng)時,,
所以在處取得極小值也是最小值,不滿足題意.
③當(dāng)時,當(dāng)時,
,函數(shù)單調(diào)遞增,
時,,
在內(nèi)單調(diào)遞減,
所以當(dāng)時,,
單調(diào)遞減,不合題意.
④當(dāng)時,即,當(dāng)時,
,單調(diào)遞減,
,當(dāng)時,
,單調(diào)遞減,,
所以在處取得極大值也是最大值,符合題意.
綜上可知,實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(2)若射線與曲線交于兩點,與直線交于點,射線與曲線交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》是中國最古老的天文學(xué)和數(shù)學(xué)著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列,若冬至、立春、春分的日影子長的和是37.5尺,芒種的日影子長為4.5尺,則立夏的日影子長為:( )
A.15.5尺B.12.5尺C.9.5尺D.6.5尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研課題組通過一款手機APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點
(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解疫情期間哈一中高三學(xué)生的心理需求,更好的開展高考前的心理健康教育工作,心理老師設(shè)計了兩個問題,第一個問題是“你出生的月份是奇數(shù)嗎?”;第二個問題是“你是否需要心理疏導(dǎo)?”.讓被調(diào)查者在保密的情況下擲一個均勻的骰子,其他人不知道擲骰子的結(jié)果,要求:當(dāng)出現(xiàn)1點或2點時,回答第一個問題;否則回答第二個問題,由于其他人不知道他回答的是哪一個問題,因此,當(dāng)他回答“是”時,你也無法知道他是否有心理問題,這種調(diào)查既保護(hù)了他的隱私,也能反映真實情況,可以從調(diào)查結(jié)果中得到需要的估計,若調(diào)查的900名學(xué)生中有156人回答“是”,由此可估計我校高三需要心理疏導(dǎo)的學(xué)生所占的比例約為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中,,,,為中點,以為折痕把折起,使點到達(dá)點的位置(平面).
(1)證明:;
(2)若,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com