(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準(zhǔn)線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長(zhǎng)為6,圓心在直線上,并與軸相切,求該圓的方程.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)由題設(shè)雙曲線C的方程為,則,
∴ 雙曲線C的方程為
(Ⅱ)由題設(shè)圓的方程為,則
,
∴ 圓的方程為
考點(diǎn):本題考查雙曲線的標(biāo)準(zhǔn)方程、雙曲線的簡(jiǎn)單性質(zhì)以及圓的方程。
點(diǎn)評(píng):已知漸近線方程為,則可設(shè)漸近線方程為;與雙曲線共漸近線的雙曲線方程可設(shè)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

解答題(本題共10分.請(qǐng)寫出文字說(shuō)明, 證明過(guò)程或演算步驟):
已知是橢圓上一點(diǎn),是橢圓的兩焦點(diǎn),且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)、是橢圓上任兩點(diǎn),且直線、的斜率分別為、,若存在常數(shù)使,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中點(diǎn)在原點(diǎn)且過(guò)點(diǎn),焦點(diǎn)在坐標(biāo)軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),
①求此雙曲線的方程.
②若拋物線的焦點(diǎn)到準(zhǔn)線的距離等于橢圓的焦距,求該拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過(guò)點(diǎn),直線交橢圓于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過(guò)點(diǎn),求證:直線軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三頂點(diǎn)的距離分別為,且滿足,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.
 
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若拋物線的頂點(diǎn)在原點(diǎn),其準(zhǔn)線方程過(guò)雙曲線-=1(,)的一個(gè)焦點(diǎn),如果拋物線與雙曲線交于(,),(,-),求兩曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案