12.已知命題p:“?m∈R,函數(shù)f(x)=m+$\frac{1}{{{2^x}+1}}$是奇函數(shù)”,則命題?p為( 。
A.?m∈R,函數(shù)f(x)=m+$\frac{1}{{{2^x}+1}}$是偶函數(shù)B.?m∈R,函數(shù)f(x)=m+$\frac{1}{{{2^x}+1}}$是奇函數(shù)
C.?m∈R,函數(shù)f(x)=m+$\frac{1}{{{2^x}+1}}$不是奇函數(shù)D.?m∈R,函數(shù)f(x)=m+$\frac{1}{{{2^x}+1}}$不是奇函數(shù)

分析 根據(jù)特稱命題的否定是全稱命題,即可得到結(jié)論.

解答 解:命題p:“?m∈R,函數(shù)f(x)=m+$\frac{1}{{{2^x}+1}}$是奇函數(shù)”,
則命題?p為?m∈R,函數(shù)f(x)=m+$\frac{1}{{{2^x}+1}}$不是奇函數(shù),
故選:C

點(diǎn)評 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.方程$y=ax-\frac{1}{a}$表示的直線可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.北宋歐陽修在《賣油翁》中寫道:“(翁)乃取一葫蘆置于地,以錢覆其扣,徐以杓酌油瀝之,自錢孔入,而錢不濕.因曰:‘我亦無他,唯手熟爾.’”可見技能都能透過反復(fù)苦練而達(dá)至熟能生巧之境的.若銅錢是半徑為2cm的圓,中間有邊長為0.5cm的正方形孔,你隨機(jī)向銅錢上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率為( 。
A.$\frac{1}{16π}$B.$\frac{1}{4π}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( 。
A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}的前n項(xiàng)和為Sn
(1)當(dāng){an}是等比數(shù)列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差數(shù)列時(shí),求an;
(2)若{an}是等差數(shù)列,且S1+a2=3,S2+a3=6,求和:Tn=$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓O:x2+y2=r2(r>0)與直線3x-4y+20=0相切,則r=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,則f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知球的表面積為64π,則它的體積為( 。
A.16πB.$\frac{256}{3}$πC.36πD.$\frac{100}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC三邊a,b,c上的高分別為$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,則cosA=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案