已知橢圓
的左頂點
,過右焦點
且垂直于長軸的弦長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
的直線
與橢圓交于點
,與
軸交于點
,過原點與
平行的直線與橢圓交于點
,求證:
為定值.
(1)
(2)
試題分析:解:(1)
,設(shè)過右焦點
且垂直于長軸的弦為
,將
代入橢圓方程
,解得
, 2分
故
,可得
. 4分
所以,橢圓方程為
. 6分
(2)由題意知,直線
斜率存在,故設(shè)為
,則直線
的方程為
,直線
的方程為
.可得
,則
. 8分
設(shè)
,
,聯(lián)立方程組
,
消去
得:
,
,
,
則
. 11分
設(shè)
與橢圓交另一點為
,
,聯(lián)立方程組
,
消去
得
,
,
所以
. 13分
故
.
所以
等于定值
. 15分
點評:本題主要考橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系等基礎(chǔ)知識,考查解析幾何的基本思想方法和綜合解題能力
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
焦點在x軸上的橢圓
的離心率的最大值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在平面斜坐標系
中
,點
的斜坐標定義為:“若
(其中
分別為與斜坐標系的
軸,
軸同方向的單位向量),則點
的坐標為
”.若
且動點
滿足
,則點
在斜坐標系中的軌跡方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若拋物線
的焦點與雙曲線
的右焦點重合,則雙曲線的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為
和
,且|
|=2,
點(1,
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過
的直線
與橢圓C相交于A,B兩點,若
A
B的面積為
,求以
為圓心且與直線
相切是圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線
的漸近線與圓
有公共點,則該雙曲線的離心率的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
與拋物線
交于A、B兩點,
(1)若|AB|="10," 求實數(shù)
的值。
(2)若
, 求實數(shù)
的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓
,則以點
為中點的弦所在直線方程為__________________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若方程
表示雙曲線,則實數(shù)
k的取值范圍是 ( )
查看答案和解析>>