已知中心在原點的雙曲線的頂點與焦點分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦點與頂點,若雙曲線的離心率為2,則橢圓離心率為
 
分析:由題意,雙曲線的頂點與焦點分別是(±c,0),(±a,0),根據(jù)雙曲線的離心率為2,可得a,c的關(guān)系,從而可求橢圓離心率.
解答:解:由題意,雙曲線的頂點與焦點分別是(±c,0),(±a,0),
∵雙曲線的離心率為2,
a
c
=2,
∴橢圓離心率為e=
c
a
=
1
2

故答案為:
1
2
點評:本題考查橢圓、雙曲線的幾何性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點,焦點在x軸上,右準線為一條漸近線的方程是過雙曲線C的右焦點F2的一條弦交雙曲線右支于P、Q兩點,R是弦PQ的中點.

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動點,且2|AB|=|F1F2|,求線段AB的中點M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準線L的左側(cè)能作出直線m:x=a,使點R在直線m上的射影S滿足,當點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案