13.如圖,等腰梯形的下底邊AB=2,上底邊CD=1,兩腰AD=BC=1,動點P從點B開始沿著邊BC,CD與DA運動,記動點P的軌跡長度為x,將點P到A,B兩點距離之和表示為x的函數(shù)f(x),則f(x)的圖象大致為( 。
A.B.C.D.

分析 根據(jù)等腰梯形的知識得到∠ABC=∠DAC=60°,等腰梯形的高為$\frac{\sqrt{3}}{2}$,根據(jù)余弦定理即可表示AP,繼而得到,f(x)=x+$\sqrt{(x-1)^{2}+3}$,0≤x≤1,再根據(jù)題意分別求出點P在幾個特殊點的位置時,f(x)的值,比較其大小,得到函數(shù)的變化趨勢,即可判斷.

解答 解:∵等腰梯形的下底邊AB=2,上底邊CD=1,兩腰AD=BC=1,
∴∠ABC=∠DAC=60°,等腰梯形的高為$\frac{\sqrt{3}}{2}$
①當(dāng)P在BC上運動時,由余弦定理可得
AP2=AB2+BP2-2AB•BP•cos60°=4+x2-2•x•2•$\frac{1}{2}$=x2+4-2x=(x-1)2+3
∴f(x)=x+$\sqrt{(x-1)^{2}+3}$
當(dāng)x=0時,f(0)=2,
當(dāng)x=1時,f(1)=1+$\sqrt{3}$,
②當(dāng)點P在CD上運動時,假如運動到CD的中點時,此時AP=$\frac{\sqrt{7}}{2}$,BP=$\frac{\sqrt{7}}{2}$,則f(1.5)=$\sqrt{7}$,
③當(dāng)點P在運動點D時,此時f(2)=f(1)=1+$\sqrt{3}$,
④當(dāng)點P在運動點A時,此時f(3)=f(0)=2,
∵1+$\sqrt{3}$>$\sqrt{7}$>2,
∴f(1)=f(2)>f(1.5)>f(0)=f(3),
∴函數(shù)f(x)先增大,再減少,再增大,再減少,且變化不是直線型,
故選:B.

點評 本題主要考查函數(shù)圖象的識別和判斷,根據(jù)條件先求出0≤x≤1時的解析式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)全集U=R,集合A={x|-2<x<2},集合B={x|x2-4x+3>0}
求A∩B,A∪B,A∩∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.P為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點,F(xiàn)1,F(xiàn)2為左右焦點,若∠F1PF2=60°.
(1)求△F1PF2的面積;
(2)求P點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x2-4x+5在區(qū)間[0,m]上的最大值為5,最小值為1,則實數(shù)m的取值范圍是(  )
A.[2,+∞)B.[2,4]C.[0,4]D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}({x≥2})\\ f({x+1})({x<2})\end{array}$,則f(log23)=( 。
A.6B.3C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.冪函數(shù)的圖象過點(2,$\frac{1}{4}$),則它的單調(diào)遞增區(qū)間是( 。
A.(0,+∞)B.[0,+∞)C.(-∞,0)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如果函數(shù)f(x)=(x-1)2+1定義在區(qū)間[t,t+1]上,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式$\frac{x-1}{x-3}$≤0的解集為( 。
A.(-∞,1]∪(3,+∞)B.[1,3)C.[1,3]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知二次函數(shù)f(x)=x2-2ax+1,a∈R;
(1)若函數(shù)f(x)在區(qū)間(-1,2)上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若不等式f(x)>0對任x∈R上恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為-2,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案