18.如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若CD∥面EFGH,求證:EH∥FG.

分析 根據(jù)線面平面的性質(zhì)定理得出CD∥EH,CD∥FG,即可證明EH∥FG.

解答 證明:∵CD∥平面EFGH,
平面ACD∩平面EFGH=EH,
∴CD∥EH;
同理,CD∥FG,
∴EH∥FG.

點評 本題主要考查空間中的線面平行問題,利用平行線的傳遞性是證明本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.定義在R上的函數(shù)f(x)滿足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(1)求函數(shù)f(x)的解析式;         
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當x>y>e-1時,求證:ex-y>$\frac{ln(x+1)}{ln(y+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若函數(shù)f(x)=-x2-10x在(-∞,λ]上是增函數(shù),則方程組$\left\{\begin{array}{l}({λ-1})x+4y=1\\ 3x+λy=2\end{array}\right.$的解的組數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,則z=3x-2y的最大值是(  )
A.8B.5C.6D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長軸是圓x2+y2=4的一條直徑,且右焦點到直線x+y-2$\sqrt{3}$=0的距離為$\frac{{\sqrt{6}}}{2}$.
(1)求橢圓C的標準方程;
(2)是否存在直線l:y=kx+m(k∈R)與橢圓C交于A,B兩點,使得$|{2\overrightarrow{OA}+\overrightarrow{OB}}|=|{2\overrightarrow{OA}-\overrightarrow{OB}}$|成立?若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(shè)集合S={0,1,2,3,…,n},則集合S中任意兩個元素的差的絕對值的和為$\frac{1}{6}$n3+$\frac{1}{2}$n2+$\frac{1}{3}$n..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知x,y都是正數(shù),且xy=x+y,則4x+y的最小值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知等比數(shù)列{an}的首項a1=2013,公比q=-$\frac{1}{2}$,數(shù)列{an}前n項的積記為Tn,則使得Tn取得最大值時n的值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求值:(1)(-1.8)0+($\frac{2}{3}$)-2•(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$-$\frac{1}{\sqrt{0.01}}$+$\sqrt{{9}^{3}}$
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2

查看答案和解析>>

同步練習冊答案