如圖,在正四棱錐S-ABCD中,P是棱SC上的點(diǎn),SPPC=12,MN分別是SB、SD上的點(diǎn),BM=DN,當(dāng)SA∥平面PMN時(shí),求MNBD

 

答案:
解析:

解:設(shè)正方形ABCD的中心為O,連SOMNO¢,連PO¢ACE,由BM=DN,可得SM=SN,于是,∴ MNBD,由SA∥平面PMN,SAÌ平面PAC,平面PAC平面PMN=PE,得SAPE.于是

,∵ ,∴ ,于是


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持PE⊥AC.則動(dòng)點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的個(gè)數(shù)為( 。
(1)EP⊥AC; 
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱錐S-ABCD中,AB=8
2
,SA=10,M、N、O分別是SA、SB、BD的中點(diǎn).
(1)設(shè)P是OC的中點(diǎn),證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大小;
(3)在△ABC內(nèi)是否存在一點(diǎn)G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市漣水縣鄭梁梅高中高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持PE⊥AC.則動(dòng)點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年遼寧省沈陽市東北育才學(xué)校高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持PE⊥AC.則動(dòng)點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案