如圖,在正方體ABCD-A1B1C1D1中,M、N分別是CD、CC1的中點,則異面直線A1M與DN所成的角的大小是   
【答案】分析:以D為坐標原點,建立空間直角坐標系,利用向量的方法求出夾角求出異面直線A1M與DN所成的角.
解答:解:以D為坐標原點,建立如圖所示的空間直角坐標系.設(shè)棱長為2,
則D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(-2,1,-2)
=0,所以,即A1M⊥DN,異面直線A1M與DN所成的角的大小是90°,
故答案為:90°.
點評:本題考查空間異面直線的夾角求解,采用了向量的方法.向量的方法能降低空間想象難度,但要注意有關(guān)點,向量坐標的準確.否則容易由于計算失誤而出錯.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結(jié)論,得到此三棱錐中的一個正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內(nèi)一動點,則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習冊答案