已知平面直角坐標系中O是坐標原點,,圓的外接圓,過點(2,6)的直線為

(1)求圓的方程;

(2)若與圓相切,求切線方程;

(3)若被圓所截得的弦長為,求直線的方程。

 

【答案】

解:(1)圓C的方程為:

(2)         (3)

【解析】此題考查了直線與圓相交的性質,直線與圓的位置關系,以及圓的標準方程,涉及的知識有:兩直線垂直時斜率滿足的關系,直線斜率的求法,直線的點斜式方程,兩點間的距離公式,線段中點坐標公式,點到直線的距離公式,垂徑定理,以及勾股定理,利用了分類討論及轉化的思想,其中當直線與圓相交時,常常根據(jù)垂徑定理由垂直得中點,進而利用弦長的一半,圓的半徑及弦心距構造直角三角形,利用勾股定理來解決問題.

(1)三角形外接圓的圓心C為三角形三邊垂直平分線的交點,故找出邊OA與OB的垂直平分線交點即為圓心C,由A和O的坐標得出直線OA的斜率,利用兩直線垂直時斜率滿足的關系求出線段OA垂直平分線的斜率,再利用線段中點坐標公式求出線段OA的中點坐標,確定出線段OA垂直平分線的方程,找出線段OB垂直平分線的方程,兩直線解析式聯(lián)立求出兩直線的交點坐標,即為圓心C的坐標,再由C與O的坐標,利用兩點間的距離公式求出|OC|的長,即為圓C的半徑,由圓心和半徑寫出圓C的標準方程即可;

(2)顯然切線方程的斜率存在,設切線方程的斜率為k,由切線過(2,6),表示出切線的方程,由直線與圓相切時,圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關于k的方程,求出方程的解得到k的值,即可確定出切線的方程;

(3)當直線l的斜率不存在時,顯然x=2滿足題意;當直線l的斜率存在時,設直線l的斜率為k,由直線l過(2,6),表示出直線l的方程,由弦長及半徑,利用垂徑定理及勾股定理求出弦心距,即為圓心C到直線l的距離,再利用點到直線的距離公式表示出圓心C到直線l的距離,列出關于k的方程,求出方程的解得到k的值,確定出直線l的方程,綜上,得到所有滿足題意的直線l的方程

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中三點坐標分別為A(3,0),B(0,4),C(cosθ,sinθ),θ∈R,則△ABC面積的最大值為( 。
A、
7
2
B、
9
2
C、
17
2
D、
21
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,點O為原點,A(-3,4),B(6,-2).C(4,6),D在AB上,且2AD=BD
(1)求
AB
的坐標及|
1
2
BC
|
;
(2)若
OE
=
OA
+
OB
,  
OF
=
OA
-
OB
,求
OE
OF
;
(3)求向量
DB
DC
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,點O為原點,A(-2,-5),B(4,-13).
(1)求
AB
的坐標及|
AB
|

(2)若
OC
=
OA
+
OB
,
OD
=
OA
-
OB
,求
OC
OD
的坐標;
(3)求
OA
OB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和對稱中心;
(Ⅱ)求f(x)在區(qū)間[0,2π]上的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,角α的始邊與x正半軸重合,終邊與單位圓(圓心是原點,半徑為1的圓)交于點P.若角α在第
一象限,且tanα=
4
3
.將角α終邊逆時針旋轉
π
3
大小的角后與單位圓交于點Q,則點Q的坐標為( 。

查看答案和解析>>

同步練習冊答案