【題目】如圖,四棱錐中,底面為直角梯形,,,,的中點(diǎn).

(Ⅰ)證明:∥平面;

(Ⅱ)若,求直線與平面所成角的正弦值.

【答案】I)見(jiàn)解析;

II

【解析】

)取BC的中點(diǎn)G,連接FG,EG,證明四邊形EGCD為平行四邊形,得EG∥平面ACD,再證明FG∥平面ACD,可得平面EFG∥平面ACD,從而得到EF∥平面ACD

)求解三角形證明BAAE,取BE的中點(diǎn)H,連接AH,HC,證明AH⊥平面BCDE.以H為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)H且平行于CD的直線為x軸,以過(guò)點(diǎn)H且平行于BC的直線為y軸,HA所在直線為z軸建立空間直角坐標(biāo)系,求出平面ACD的一個(gè)法向量,再求出直線BC的方向向量,由兩向量所成角的余弦值可得直線BC與平面ACD所成角的正弦值.

解:證明:(I)作中點(diǎn),連接,則,

,四邊形為平行四邊形,

,則平面,

的中點(diǎn),,則平面

,平面平面

平面,

平面

II,,

,則,

,則

中點(diǎn),連接,

,,

,,即,

,平面.

為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)且平行于的直線為軸,以過(guò)點(diǎn)且平行于的直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,

可得,,,

設(shè)為平面的一個(gè)法向量,

可得

直線的方向向量,

設(shè)與平面所成角為,

,

綜上,直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,得到甲、乙兩位學(xué)生成績(jī)的莖葉圖.

1)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,對(duì)預(yù)賽成績(jī)的平均值和方差進(jìn)行分析,你認(rèn)為哪位學(xué)生的成績(jī)更穩(wěn)定?請(qǐng)說(shuō)明理由;

2)若將頻率視為概率,求乙同學(xué)在一次數(shù)學(xué)競(jìng)賽中成績(jī)高于84分的概率;

3)求在甲同學(xué)的8次預(yù)賽成績(jī)中,從不小于80分的成績(jī)中隨機(jī)抽取2個(gè)成績(jī),列出所有結(jié)果,并求抽出的2個(gè)成績(jī)均大于85分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)當(dāng)為何值時(shí),軸為曲線的切線;

2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在底面為菱形的四棱柱中,平面.

1)證明:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列和等比數(shù)列中, ,,項(xiàng)和.

(1)若 ,求實(shí)數(shù)的值;

(2)是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中?若存在,求出所有的,若不存在,說(shuō)明理由;

(3)是否存在正實(shí)數(shù),使得數(shù)列中至少有三項(xiàng)在數(shù)列中,但中的項(xiàng)不都在數(shù)列中?若存在,求出一個(gè)可能的的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒(méi)有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓是橢圓內(nèi)任一點(diǎn).設(shè)經(jīng)過(guò)的兩條不同直線分別于橢圓交于點(diǎn)的斜率分別為

1)當(dāng)經(jīng)過(guò)橢圓右焦點(diǎn)且中點(diǎn)時(shí),求:

①橢圓的標(biāo)準(zhǔn)方程;

②四邊形面積的取值范圍.

2)當(dāng)時(shí),若點(diǎn)重合于點(diǎn),且.求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解高中學(xué)生對(duì)數(shù)學(xué)課是否喜愛(ài)是否和性別有關(guān),隨機(jī)調(diào)查220名高中學(xué)生,將他們的意見(jiàn)進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表.

喜愛(ài)數(shù)學(xué)課

不喜愛(ài)數(shù)學(xué)課

合計(jì)

男生

90

20

110

女生

70

40

110

合計(jì)

160

60

220

1)根據(jù)上面的列聯(lián)表判斷,能否有的把握認(rèn)為喜愛(ài)數(shù)學(xué)課與性別有關(guān);

2)為培養(yǎng)學(xué)習(xí)興趣,從不喜愛(ài)數(shù)學(xué)課的學(xué)生中進(jìn)行進(jìn)一步了解,從上述調(diào)查的不喜愛(ài)數(shù)學(xué)課的人員中按分層抽樣抽取6人,再?gòu)倪@6人中隨機(jī)抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1男生的概率.

參考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線)的焦點(diǎn)到點(diǎn)的距離為.

1)求拋物線的方程;

2)過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)分別在第一和第二象限內(nèi),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案