【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0.
(1)求證:對m∈R,直線l與圓C總有有兩個不同的交點A、B;
(2)求弦AB的中點M的軌跡方程.

【答案】
(1)證明:∵直線l:mx﹣y+1﹣m=0過定點P(1,1),而點P(1,1)在圓內(nèi),

∴直線l與圓C總有兩個不同交點


(2)解:當M與P不重合時,連結(jié)CM、CP,則CM⊥MP,

又因為|CM|2+|MP|2=|CP|2

設(shè)M(x,y)(x≠1),則x2+(y﹣1)2+(x﹣1)2+(y﹣1)2=1,

化簡得:x2+y2﹣x﹣2y+1=0(x≠1)

當M與P重合時,x=1,y=1也滿足上式.

故弦AB中點的軌跡方程是x2+y2﹣x﹣2y+1=0.


【解析】(1)利用直線l:mx﹣y+1﹣m=0過定點P(1,1),而點P(1,1)在圓內(nèi),判定直線l與圓C總有兩個不同交點A、B;(2)設(shè)出弦AB中點M,用弦的中點與圓心連線與割線垂直,求出軌跡方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙等五名奧運志愿者被隨機地分到A,B,C,D四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個崗位服務(wù)的概率;
(3)設(shè)隨機變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解小學生的體能情況,抽取了某校一個年級的部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.

(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達標,試估計該年級學生跳繩測試的達標率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程和曲線的普通方程;

(2)求直線與曲線的交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點為橢圓上一點,直線的方程為,求證:直線與橢圓有且只有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b為正實數(shù),且 ,若a+b﹣c≥0對于滿足條件的a,b恒成立,則c的取值范圍為( )
A.
B.(﹣∞,3]
C.(﹣∞,6]
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓C: =1,設(shè)R(x0 , y0)是橢圓C上的任一點,從原點O向圓R:(x﹣x02+(y﹣y02=8作兩條切線,分別交橢圓于點P,Q.

(1)若直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1 , k2 , 求證:2k1k2+1=0;
(3)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將甲、乙兩顆骰子先后各拋一次,a、b分別表示拋擲甲、乙兩顆骰子所出現(xiàn)的點數(shù)﹒圖中三角形陰影部分的三個頂點為(0,0)、(4,0)和(0,4).

(1)若點P(a,b)落在如圖陰影所表示的平面區(qū)域(包括邊界)的事件記為A,求事件A的概率;
(2)若點P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率P最大,求m和P的值﹒

查看答案和解析>>

同步練習冊答案