在直三棱柱中,分別是棱上的點(點 不同于點),且的中點.

求證:(1)平面平面
(2)直線平面

(1)∵是直三棱柱,∴平面, 又∵平面,∴,又∵平面,∴平面, 又∵平面,∴平面平面
(2)∵,的中點,∴,又∵平面,且平面,∴,又∵平面,∴平面

解析試題分析:(1)∵是直三棱柱,∴平面, 又∵平面,∴,
又∵平面,∴平面, 又∵平面,∴平面平面
(2)∵,的中點,∴,
又∵平面,且平面,∴,
又∵平面,,∴平面,
由(1)知,平面,∴,
又∵平面平面,∴直線平面.
考點:本題考查了空間線面關(guān)系的判斷
點評:以棱柱為載體考查立體幾何中的線面、面面、點面位置關(guān)系或距離是高考的亮點,掌握其判定性質(zhì)及定理,是解決此類問題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)在直三棱柱(側(cè)棱垂直底面)中,,

(Ⅰ)若異面直線所成的角為,求棱柱的高;
(Ⅱ)設(shè)的中點,與平面所成的角為,當(dāng)棱柱的高變化時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(本題滿分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點.

(1)求證:平面PCE 平面PCD;
(2)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖所示是一個半圓柱與三棱柱的組合體,其中,圓柱的軸截面是邊長為4的正方形,為等腰直角三角形,.

試在給出的坐標紙上畫出此組合體的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在正四棱錐中,側(cè)棱的長為,所成的角的大小等于

(1)求正四棱錐的體積;
(2)若正四棱錐的五個頂點都在球的表面上,求此球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,平面⊥平面,是直角三角形,,四邊形是直角梯形,其中,,,且,的中點,分別是的中點.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)已知:正方體中,棱長,、分別為、的中點,、的中點,

(1)求證://平面
(2)求:到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,在四面體中,,的中點.

(1)求證:平面;
(2)設(shè)的重心,是線段上一點,且.求證:平面.

查看答案和解析>>

同步練習(xí)冊答案