(本小題滿分14分)已知函數(shù)

(I)求函數(shù)上的最小值;

(II)對一切恒成立,求實(shí)數(shù)的取值范圍;

(III)求證:對一切,都有

 

 

【答案】

(I)f ′(x)=lnx+1,當(dāng)x∈(0,),f ′(x)<0,f (x)單調(diào)遞減,

當(dāng)x∈(,+∞),f ′(x)>0,f (x)單調(diào)遞增.                                  ……2分

①0<t<t+2<,t無解;

②0<t<<t+2,即0<t<時(shí),f (x)min=f ()=-;

≤t<t+2,即t≥時(shí),f (x)在[t,t+2]上單調(diào)遞增,f (x)min=f (t)=tlnt;

所以f (x)min.                                                                     ……5分

(II)2xlnx≥-x2+ax-3,則a≤2lnx+x+,   ……6分

設(shè)h (x)=2lnx+x+(x>0),則h′ (x)=,x∈(0,1),h′ (x)<0,h (x)單調(diào)遞減,

x∈(1,+∞),h′ (x)>0,h (x)單調(diào)遞增,所以h (x)min=h (1)=4,

因?yàn)閷σ磺衳∈(0,+∞),2f (x)≥g (x)恒成立,

所以a≤h (x)min=4.       ……10分

(III)問題等價(jià)于證明xlnx>(x∈(0,+∞)),

由(I)可知f (x)=xlnx(x∈(0,+∞))的最小值是-,當(dāng)且僅當(dāng)x=時(shí)取到.       

設(shè)m (x)=(x∈(0,+∞)),則m ′(x)=

易得m (x)max=m (1)=-,當(dāng)且僅當(dāng)x=1時(shí)取到,

從而對一切x∈(0,+∞),都有l(wèi)nx>.                                        ……14分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案