(本小題滿分14分)已知函數(shù)
(I)求函數(shù)在上的最小值;
(II)對一切恒成立,求實(shí)數(shù)的取值范圍;
(III)求證:對一切,都有
(I)f ′(x)=lnx+1,當(dāng)x∈(0,),f ′(x)<0,f (x)單調(diào)遞減,
當(dāng)x∈(,+∞),f ′(x)>0,f (x)單調(diào)遞增. ……2分
①0<t<t+2<,t無解;
②0<t<<t+2,即0<t<時(shí),f (x)min=f ()=-;
③≤t<t+2,即t≥時(shí),f (x)在[t,t+2]上單調(diào)遞增,f (x)min=f (t)=tlnt;
所以f (x)min=. ……5分
(II)2xlnx≥-x2+ax-3,則a≤2lnx+x+, ……6分
設(shè)h (x)=2lnx+x+(x>0),則h′ (x)=,x∈(0,1),h′ (x)<0,h (x)單調(diào)遞減,
x∈(1,+∞),h′ (x)>0,h (x)單調(diào)遞增,所以h (x)min=h (1)=4,
因?yàn)閷σ磺衳∈(0,+∞),2f (x)≥g (x)恒成立,
所以a≤h (x)min=4. ……10分
(III)問題等價(jià)于證明xlnx>-(x∈(0,+∞)),
由(I)可知f (x)=xlnx(x∈(0,+∞))的最小值是-,當(dāng)且僅當(dāng)x=時(shí)取到.
設(shè)m (x)=-(x∈(0,+∞)),則m ′(x)=,
易得m (x)max=m (1)=-,當(dāng)且僅當(dāng)x=1時(shí)取到,
從而對一切x∈(0,+∞),都有l(wèi)nx>-. ……14分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com