已知P1(x1,y1)是直線l:f(x,y)=0上的一點(diǎn),P2(x2,y2)是直線l外一點(diǎn),則方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直線與直線l的位置關(guān)系是
 
考點(diǎn):恒過定點(diǎn)的直線
專題:直線與圓
分析:由P1(x1,y1)是直線l:f(x,y)=0上的一點(diǎn),P2(x2,y2)是直線l外一點(diǎn),可得f(x1,y1)=0,f(x2,y2)≠0,則方程f(x,y)+f(x1,y1)+f(x2,y2)=0即為f(x,y)+f(x2,y2)=0表示的直線與直線l的斜率相等而截距不等,因此平行.
解答: 解:∵P1(x1,y1)是直線l:f(x,y)=0上的一點(diǎn),P2(x2,y2)是直線l外一點(diǎn),
∴f(x1,y1)=0,f(x2,y2)≠0,
則方程f(x,y)+f(x1,y1)+f(x2,y2)=0即為f(x,y)+f(x2,y2)=0表示的直線與直線l的斜率相等而截距不等,
因此與直線l的位置關(guān)系是平行.
故答案為:平行.
點(diǎn)評(píng):本題考查了平行直線的判定,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的定義域?yàn)閇-1,2],則函數(shù)g(x)=f(x)-f(-x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:鈍角三角形的內(nèi)角中有且只有一個(gè)鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:(
32
6-
7
5
×(
25
49
)
1
2
-(-2013)0+2log23=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)、g(x)都是定義域?yàn)镽的連續(xù)函數(shù).已知:g(x)滿足:①當(dāng)x>O時(shí),g′(x)>0 恒成立;②?x∈R都有g(shù)(x)=g(-x).f(x)滿足:①?x∈R都有f(x+
3
)=f(x-
3
);②當(dāng)x∈[-
3
2
3
2
]時(shí),f(x)=x3-3x.若關(guān)于;C的不等式g[f(x)]≤g(a2-a+2)對(duì)x∈[-
3
2
-2
3
,
3
2
-2
3
]恒成立,則a的取值范圍是( 。
A、(-∞,0]∪[1,+∞)
B、[0,1]
C、[
1
2
-
3
3
4
,-
1
2
+
3
3
4
]
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的可導(dǎo)函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足對(duì)任意實(shí)數(shù)x,f(x)+f(-x)=x2,對(duì)任意正數(shù)x,f′(x)>x,若f(2-a)-f(a)≥2-2a,則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:tanα+tanβ=tan(α+β)-tanαtanβtan(α+β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
1-
1
2x
,x>0
(a-1)x+1,x≤0

(1)證明:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)求函數(shù)f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,以F1,F(xiàn)2為焦點(diǎn)的橢圓C,過點(diǎn)(1,
2
2
),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)T(2,0),過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),且
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案