已知兩曲線參數(shù)方程分別為 (0≤θ<π)和 ( t ∈R),求它們的交點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x-1 |
y-2 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
π |
4 |
|
7π |
2 |
7π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高二第二學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題
(本題滿(mǎn)分14分)已知直線的參數(shù)方程為, 曲線的極坐標(biāo)方程為.
(1)將直線的參數(shù)方程化為普通方程;以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,建立直角坐標(biāo)系,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若為直線上任一點(diǎn),是曲線上任一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分14分)已知直線的參數(shù)方程為, 曲線的極坐標(biāo)方程為.
(1)將直線的參數(shù)方程化為普通方程;以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,建立直角坐標(biāo)系,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若為直線上任一點(diǎn),是曲線上任一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分14分)已知直線的參數(shù)方程為, 曲線的極坐標(biāo)方程為.
(1)將直線的參數(shù)方程化為普通方程;以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,建立直角坐標(biāo)系,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若為直線上任一點(diǎn),是曲線上任一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省泰州中學(xué)高二第二學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題
(本題滿(mǎn)分14分)已知直線的參數(shù)方程為,曲線的極坐標(biāo)方程為.
(1)將直線的參數(shù)方程化為普通方程;以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,建立直角坐標(biāo)系,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若為直線上任一點(diǎn),是曲線上任一點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com