如圖所示,平面,四邊形是矩形,,M,N分別是AB,PC的中點(diǎn),
(1)求平面和平面所成二面角的大小,
(2)求證:平面
(3)當(dāng)的長(zhǎng)度變化時(shí),求異面直線PC與AD所成角的可能范圍.
(1);(2)詳見解析;(3)
解析試題分析:(1)求二面角大小時(shí),需先找后求,∵平面,則,又,∴可證面,從而,則就是平面和平面所成二面角的平面角,∵,;(2)可證明直線垂直于面內(nèi)的兩條相交直線,也可利用轉(zhuǎn)化法,先證明與平行的一直線垂直于面,從而平面,該題中,取中點(diǎn),連接,可證明四邊形是平行四邊形,從而∥,先證明⊥面,從而平面;(3)異面直線所成的角是空間角,應(yīng)該轉(zhuǎn)化為平面角來解決,仍然應(yīng)該先找后求,由∥,則就是異面直線和所成的角(或其補(bǔ)角),∵,∴面,從而,在中,設(shè),,先確定的范圍,再求的范圍.
試題解析:(1) PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA是平面PCD與平面ABCD所成二面角的平面角,在Rt△PAD中,PA⊥AD,PA=AD,∴∠PDA=45° 3分
(2)如圖,取PD中點(diǎn)E,連結(jié)AE,EN,又M,N分別是AB,PC的中點(diǎn),∴EN∥CD∥AB ∴AMNE是平行四邊形 ∴MN∥AE,在等腰Rt△PAD中,AE是斜邊的中線,∴AE⊥PD,又CD⊥AD,CD⊥PD ∴CD⊥平面PAD,∴CD⊥AE,又PD∩CD=D,∴AE⊥平面PCD,∴MN⊥平面PCD。 8分
(3)由∥,則就是異面直線和所成的角(或其補(bǔ)角),∵,∴面,∴,在中,設(shè),,∴,又∵,∴,即異面直線和所成的角的范圍是 12分
考點(diǎn):1、二面角的求法;2、直線和平面垂直的判定;3、異面直線所成的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點(diǎn),,,.
(1)若點(diǎn)在線段上,問:無論在的何處,是否都有?請(qǐng)證明你的結(jié)論;
(2)求二面角的平面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF^PB交PB于點(diǎn)F,
(1)求證:PA//平面EDB;
(2)求證:PB^平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,,.
(Ⅰ)若點(diǎn)是的中點(diǎn),求證:平面;
(II)試問點(diǎn)在線段上什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點(diǎn).
(1)求證:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,四邊形為矩形,為等腰三角形,,平面 平面,且,分別為和的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是直角梯形,,,和是兩個(gè)邊長(zhǎng)為的正三角形,,為的中點(diǎn),為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com