不等式(1+x)(2-x)>0的解集為( 。
分析:在不等式兩邊同時(shí)乘以-1,不等號(hào)方向改變,把2-x變?yōu)閤-2,根據(jù)兩數(shù)相乘,異號(hào)得負(fù)可把原不等式化為兩個(gè)不等式組,分別求出不等式組的解集,即可得到原不等式的解集.
解答:解:不等式(x+1)(2-x)>0,
即(x+1)(x-2)<0,
可化為:
x+1>0
x-2<0
x+1<0
x-2>0
,
解得:-1<x<2,
則原不等式的解集為(-1,2).
故選C.
點(diǎn)評(píng):此題考查了一元二次不等式不等式的解法,利用了轉(zhuǎn)化的數(shù)學(xué)思想,是高考中常考的基本題型.一元二次不等式轉(zhuǎn)化為不等式組的理論依據(jù)為:兩數(shù)相乘同號(hào)得正、異號(hào)得負(fù)的取符號(hào)法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)不等式組
-1≤x≤2
0≤y≤2
所表示的平面區(qū)域是W,從區(qū)域W中隨機(jī)取點(diǎn)M(x,y).
(Ⅰ)若x,y∈Z,求點(diǎn)M位于第一象限的概率;
(Ⅱ)若x,y∈R,求|OM|≤2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)).
現(xiàn)以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,寫出曲線C的極坐標(biāo)方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
1≤x+y≤4
y+2≥|2x-3|

(1)作出點(diǎn)(x,y)所在的平面區(qū)域并求出x2+y2的取值范圍;
(2)設(shè)m>-1,在(1)所求的區(qū)域內(nèi),求Q=y-mx的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x、y滿足不等式組
1≤x+y≤4
y+2≥|2x-3|.

(1)作出點(diǎn)(x,y)所在的平面區(qū)域
(2)設(shè)a>-1,在(1)所求的區(qū)域內(nèi),求函數(shù)f(x,y)=y-ax的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案