已知橢圓的右焦點(diǎn)為F(1,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△OMF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線l交橢圓于P,Q兩點(diǎn),且使點(diǎn)F為△PQM的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
解:(Ⅰ)由△是等腰直角三角形,得,, 故橢圓方程為 5分 (Ⅱ)假設(shè)存在直線交橢圓于,兩點(diǎn),且為△的垂心, 設(shè), 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4926/0019/c8c87e7c1183605c6fc324d45c623b63/C/Image216.gif" width=49 height=21>,,故 7分 于是設(shè)直線的方程為, 由得. 由,得,且, 9分 由題意應(yīng)有,又, 故, 得. 即. 整理得. 解得或 12分 經(jīng)檢驗(yàn),當(dāng)時(shí),△不存在,故舍去. 當(dāng)時(shí),所求直線存在,且直線的方程為 13分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
AC |
A、
| ||
B、2 | ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年黃岡中學(xué)二模理)如圖,已知橢圓的右焦點(diǎn)為F,過(guò)F的直線(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線交x軸于點(diǎn)K,左頂點(diǎn)為A.
(1)求證:KF平分∠MKN;
(2)直線AM、AN分別交準(zhǔn)線于點(diǎn)P、Q,設(shè)直線MN的傾斜角為,試用表示線段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(14分)已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。
(1)已知橢圓的離心率;
(2)若的最大值為49,求橢圓C的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(重慶卷)數(shù)學(xué)理工類(lèi)模擬試卷(三) 題型:解答題
如圖,已知橢圓的右焦點(diǎn)為F,過(guò)F的直線(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線交x軸于點(diǎn)K,左頂點(diǎn)為A.
(Ⅰ)求證:KF平分∠MKN;
(Ⅱ)直線AM、AN分別交準(zhǔn)線于點(diǎn)P、Q,
設(shè)直線MN的傾斜角為,試用表示
線段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷十三文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com