計算:
(1)0.064-
1
3
-(-
7
6
)0+(
8
27
)
2
3
(1
7
9
)-0.5

(2)log49•log2732+(lg2)2+2lg2lg5+(lg5)2
考點:對數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)的運(yùn)算法則即可得出;
(2)利用對數(shù)的運(yùn)算法則即可得出.
解答: 解:(1)原式=0.43×(-
1
3
)
-1+
8
27
×(
4
3
)2×(-0.5)

=
5
2
-1+
8
27
×
3
4

=
3
2
+
2
9

=
31
18

(2)原式=
2lg3
2lg2
×
5lg2
3lg3
+(lg2+lg5)2
=
5
3
+1
=
8
3
點評:本題考查了指數(shù)與對數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)z=
2-3i
1+i
對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班班會準(zhǔn)備從甲、乙等7名學(xué)生中選派4名學(xué)生發(fā)言,要求甲、乙兩名同學(xué)至少有一人參加,那么不同的發(fā)言順序的種數(shù)為( 。
A、840B、720
C、600D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x2+bx+c
x2+1
(b<0)的值域為[1,3],求實數(shù)b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
lim
x→0+
(sin
x+1
-sin
x
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A1,A2,…,An是平面上的n個不同的點,則滿足
MA1
+
MA2
+…+
MAn
=
0
的點M的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個條件中,p是q的充要條件條件的是
 

①p:a>b,q:a2>b2; ②p:a>b,q:2a>2b
③p:ax2+by2=c為雙曲線,q:ab<0;④p:ax2+bx+c>0,q:
c
x2
-
b
x
+a>0

⑤p:m<-2或m>6;q:y=x2+mx+m+3有兩個不同的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖A,B是單位圓O上的點,點A是單位圓與x軸正半軸的交點.點B在第二象限,∠AOB=θ,sinθ=
4
5

(Ⅰ)求B點坐標(biāo);
(Ⅱ)求sin(π-θ)+2sin(
π
2
-θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足:①在定義域D內(nèi)是單調(diào)函數(shù);②存在[a,b]⊆D(a<b),使f(x)在[a,b]上的值域為[-b,-a],那么y=f(x)叫做對稱函數(shù).現(xiàn)有f(x)=
1-x
-k是對稱函數(shù),則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案