在平面直角坐標系中,定義橫坐標及縱坐標均為整數(shù)的點為格點.如果直線y=kx+b與圓x2+y2=5的公共點均為格點,那么這樣的直線有( )
A.24條
B.28條
C.32條
D.36條
【答案】分析:根據(jù)題中格點的定義,找出圓x2+y2=5上所有的格點,發(fā)現(xiàn)共8個,然后分兩種情況考慮:
當直線y=kx+b與圓相切時,切點恰為這8個格點時,這樣的直線有8條;
當直線與圓相交時,相當于從8個點中找2個點,利用排列組合公式求出直線的條數(shù),但是注意到y(tǒng)=kx+b的斜率要存在,故平行與y軸的直線不滿足題意,找出與y軸平行的直線;
綜上,用相切時直線的條數(shù)+相交時直線的條數(shù)-與y軸平行的直線條數(shù),求出的結(jié)果即為滿足題意的所有直線的條數(shù).
解答:解:由題意可知:圓x2+y2=5上的格點有且只有八個:
(1,2),(2,1),(-1,2),(-2,1),(-1,-2),(-2,-1),(1,-2),(2,-1),
分兩種情況考慮:
當直線與圓相切,且切點為這8個格點時,這樣的直線有8條;
當直線與圓相交且交點為格點時,這樣的直線有C82=28(條),注意到與y軸平行的直線有4條,
綜上,滿足條件的直線有8+28-4=32(條),
故選C.
點評:此題考查了直線與圓相交的性質(zhì),是以直線和圓為載體,考查數(shù)學的綜合應(yīng)用能力.學生做題時一定要注意與y軸平行的直線斜率不存在不滿足題意,要舍去.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案