在正四面體ABCD中,點Q在線段AD上運動,當數(shù)學公式取得最小值時,點Q的位置位于


  1. A.
    點A處
  2. B.
    點D處
  3. C.
    靠近D點的三等分點處
  4. D.
    線段AD中點處
D
分析:設,則,,利用數(shù)量積公式,化簡,再配方,即可求得結論.
解答:設,則
=()•()=t2-t()+
設||=a,則=a2[(t-2+]
當t=時,取得最小值,即點Q的位置位于AD的中點.
點評:本題考查向量的數(shù)量積運算,考查學生的計算能力,正確利用數(shù)量積公式是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在正四面體ABCD中,E、F分別是BC、AD中點,則異面直線AE與CF所成的角是
 
.(用反三角值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知有關正三角形的一個結論:“在正三角形ABC中,若D是BC的中點,G是三角形ABC內切圓的圓心,則
AG
GD
=2”.若把該結論推廣到正四面體(所有棱長均相等的三棱錐),則有結論:“在正四面體ABCD中,若M是正三角形BCD的中心,O是在正四面體ABCD內切球的球心,則
AO
OM
=
3
3
”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學使用類比推理得到如下結論:
(1)同一平面內,三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b,類比出:空間中,三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b;
(2)a,b∈R,a-b>0則a>b,類比出:a,b∈C,a-b>0則a>b;
(3)以點(0,0)為圓心,r為半徑的圓的方程是x2+y2=r2,類比出:以點(0,0,0)為球心,r為半徑的球的方程是x2+y2+z2=r2;
(4)正三角形ABC中,M是BC的中點,O是△ABC外接圓的圓心,則
AO
OM
=2
,類比出:在正四面體ABCD中,若M是△BCD的三邊中線的交點,O為四面體ABCD外接球的球心,則
AO
OM
=3

其中類比的結論正確的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四面體ABCD中,點E為棱AD的中點,則異面直線AB與CE所成角的大小為
arccos
3
6
arccos
3
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四面體ABCD中,E,F(xiàn)分別為BC,AD的中點,則異面直線AE與CF所成角的余弦值是
 

查看答案和解析>>

同步練習冊答案